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Chapter 1

Computational foundations of
reinforcement learning

Contingencies are dependency relations among elements in the environment
of an organism. For instance, in our everyday environment, a traffic light
usually turns green a few time after it has turned red or, in a baby’s environ-
ment, crying often brings the appearance of the parents. If all the elements
involved in a contingency are stimuli (as in the traffic light example), it is a
Pavlovian contingency. Otherwise (as in the baby example), it is an operant
contingency.

The environment of an organism could be described as a set of Pavlovian
and operant contingencies. When new contingencies are added or old ones are
modified, we usually observe a modification in the behavior of the organism:
this is the phenomena that we call adaptation. Behavior is fundamentally
adaptive in the sense that it is sensible to modifications in the environmental
contingencies. Since an animal could not survive in its environment without
this ability to tune its activity to its environment, adaptation is certainly
the most important feature of behavior and the key to its understanding: no
matter the mechanisms underlying behavior, they have been selected during
evolution for their capacity to generate adaptive behavior.

In experimental psychology, the two main procedures for the study of
adaptive behavior are Pavlovian and operant conditioning (Pavlov, 1927;
Skinner, 1938). Pavlovian conditioning studies the way organism modifies
their activity when exposed to Pavlovian contingencies while operant con-
ditioning does the same for operant contingencies. These procedures has
allowed to collect an impressive amount of data on the way animals adapt
to their environment. But what are the processes involved? In this text, we
will point out the relevance of so-called reinforcement learning algorithms
which have been developed in computer science. These methods for learning
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in artificial autonomous agents are prediction methods solving a special kind
of optimization problems called Markovian decision problems (MDP). The
next section provide an introduction to MDP and reinforcement learning and
discuss the relation between them and artificial neural network. We will then
review their applications in the conditioning literature.

1.1 Markovian decision problems

A MDP is composed of an environment, characterized by a set of states s ∈ S
and of an agent characterized by a set of controls (or actions) u ∈ U . The
agent is further characterized by a policy π which attributes to each s ∈ S a
control π(s) ∈ U . This kind of policy is deterministic. Policies can also be
stochastic but, most of the time, we will consider only deterministic ones.

The agent and the environment interact together according to the follow-
ing sequence

1. At time t, the environment is in state s(t) = s.

2. The agent emits control u(t) = π[s(t)] = u.

3. The environment goes into state s(t+ 1) = s′.

4. The agent collects an immediate amount of primary value r(t) = r.

The dynamics of the environment is Markovian: s(t + 1) only depend upon
s(t) and u(t), the states previously visited and the controls previously emitted
have no impact on the current dynamics of the environment. So, we can
define the state transition probability p(s′|s, u) which is the probability that
s(t+1) = s′ when s(t) = s and u(t) = u. The Markovian property also holds
for r(t) whose mean value is determined by the return function f [s(t), s(t+
1), u(t)].

The Markov property allows the computation of V π(s), the situation value
of state s for policy π. It is the total (discounted) amount of primary value
that an agent can expect to collect if, while the environment is in state s, it
begins to follow policy π.

V π(s) =
∑
u

p(u|s)
∑
s′
p(s′|s, u)[f(s, s′, u) + γV π(s′)]

=
∑
u

p(u|s)Qπ(s, u) (1.1)

This is Bellman’s equation for policy π. p(u|s) is the probability of emitting
control u when the environment is in state s. It is, of course, determined by
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π. If π is deterministic, then p(u|s) = 1 if u = π(s) and 0 otherwise. γ is a
free positive parameter always smaller than 1 called the discount factor which
controls the impact of delayed rewards on the value V π(s). The closer it is to
1, the more they are taken into account. Finally, Qπ(s, u) is the state-action
value of state s and action u for policy π (or, more shortly, the Q-value).
It is the total (discounted) amount of reward that an agent can expect to
collect if, while the environment is in state s, it emits control u and then
follows policy π. Note that, for a deterministic policy, V π(s) = Qπ[s, π(s)].

Equation (1.1) defines the function V π called the value function for policy
π. We have

V π : S → <
: s 7→ V π(s) (1.2)

A related function is Qπ, the state-action value function for policy π defined
as

Qπ : S × U → <
: s, u 7→ Qπ(s, u) (1.3)

In a MDP, the goal of the agent is to find an optimal policy π∗ which
maximizes the total (discounted) amount of primary value that the agent
can collect in any state of the environment. Put it in another way, it is to
find a policy π∗ whose value function V π∗

is equal to V ∗, the optimal value
function defined as

V ∗ : S → <
: s 7→ V ∗(s) = max

π
V π(s) (1.4)

A related function is Q∗, the optimal state-action value function defined as

Q∗ : S × U → <
: s, u 7→ Q∗(s, u) = max

π
Qπ(s, u) (1.5)

Although there can be several optimal policies, the optimal value function
V ∗ is unique. So, since selecting the action with the highest Q*-value is
necessarily an optimal policy, we have

V ∗(s) = max
u

Q∗(s, u)

= max
u

max
π

Qπ(s, u)

= max
u

max
π

∑
s′
p(s′|s, u)[f(s, s′, u) + γV π(s′)]
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= max
u

∑
s′
p(s′|s, u)[f(s, s′, u) + γmax

π
V π(s′)]

= max
u

∑
s′
p(s′|s, u)[f(s, s′, u) + γV ∗(s′)] (1.6)

Equation (1.6) is Bellman’s optimality equation (see Bertsekas, 1995; Bert-
sekas & Tsitsiklis, 1996 and Sutton & Barto, 1998 for further details).

1.2 Solving Markovian decision problems

Algorithms allowing an agent to solve a MDP use Bellman’s optimality equa-
tion to compute the optimal value function. An optimal policy is then derived
from it. They have been labeled reinforcement learning (RL) algorithms in
artificial intelligence and are subdivided into two groups: dynamic program-
ming on one side and neurodynamic programming on the other.

1.2.1 Dynamic programming

Dynamic programming (DP) requires an explicit knowledge of the environ-
ment e.g. of the state transition probabilities and of the return function. The
optimal value function and the optimal policy are computed off-line, before
any interaction between the agent and its environment.

What are the fundamentals of DP? Up to now, we have only considered
MDP with an infinite horizon e.g. MDP where the agent and the environ-
ment interact for an infinite number of time steps. Now, consider a MDP
with a horizon of 1: the agent and the environment only interact for one time
step. If we note V ∗

1 the optimal value function for that problem, we have
(using the same reasoning as the one for the derivation of equation 1.6)

V ∗
1 (s) = max

u
Q∗1(s, u)

= max
u

max
π

Qπ
1 (s, u) (1.7)

= max
u

∑
s′
p(s′|s, u)[f(s, s′, u) + γV ∗

0 (s′)]

Where V ∗
0 (s) is a fixed terminal reward (it can be set to 0). Now, consider

the same MDP problem but with a horizon of 2. Using the same reasoning
as above, we have

V ∗
2 (s) = max

u
Q∗2(s, u)

= max
u

max
π

Qπ
2 (s, u) (1.8)

= max
u

∑
s′
p(s′|s, u)[f(s, s′, u) + γV ∗

1 (s′)]
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Where V ∗
1 (s) is given by equation (1.7). The same way, we have

V ∗
3 (s) = max

u
Q∗3(s, u)

= max
u

max
π

Qπ
3 (s, u) (1.9)

= max
u

∑
s′
p(s′|s, u)[f(s, s′, u) + γV ∗

2 (s′)]

And, more generally, if the optimal value function for the MDP with a horizon
of n is known, we have

V ∗
n+1(s) = max

u

∑
s′
p(s′|s, u)[r + γV ∗

n (s′)] (1.10)

Equation (1.10) is called Bellman’s principle of optimality. It can be used to
generate a sequence of optimal value functions V ∗

1 , V
∗
2 , ..., V

∗
i , ..., V

∗
n . Since it

can be shown that
V ∗(s) = lim

n→∞
V ∗

n (s) (1.11)

This sequence is assured to converge on V ∗.
This algorithm, called value iteration, is one of the main DP methods.

Other DP algorithms rely on similar principles as those described in equations
(1.10) and (1.11) (see Bertsekas, 1995 for further details).

Once the optimal value function is known, it is easy to derive an optimal
policy from it: for a given state s ∈ S, the agent has simply to select the
control with the highest Q∗(s, u) (see equation 1.6). So, most of the time,
only deterministic policies are optimal. The only exception is when several
controls have the same Q∗(s, u). In such a case, choosing any one of these
controls is optimal and so, a stochastic policy can be optimal. But, in all other
cases, stochastic policies are suboptimal because they imply the selection of
a control which has not the highest Q∗(s, u).

1.2.2 Neurodynamic programming

Neurodynamic programming (NDP) requires no a priori knowledge about
the environment dynamics and the optimal value function is computed on
line, while the agent is interacting with its environment.

These algorithms store estimations vπ, v∗, qπor q∗ (of respectively V π, V ∗,
Qπor Q∗) for each state of the environment and, possibly, for each control of
the agent. The interaction with the environment is used as a way to prompt
the environment in order to have access to better evaluation ψ of either of
the functions they try to estimate. So, if the agent is storing evaluations v of
V π or V ∗ or q of Qπ or Q∗, it will prompt the environment which will return
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an estimation ψ(s) of V π(s) or V ∗(s) or ψ(s, u) of Qπ(s, u) or Q∗(s, u). The
agent will use these estimations to improve its own evaluations using one of
these two following equations:

v(s) := v(s) + α[ψ(s)− v(s)]

q(s, u) := q(s, u) + α[ψ(s, u)− q(s, u)] (1.12)

where α is a learning rate.
For instance, consider Q-learning (Watkins & Dayan, 1992), the most

popular one of these algorithms and the NDP equivalent of value iteration.
Q-learning directly tries to evaluate Q∗ by storing estimations q∗ which are
updated on a real-time basis according to the following equation

q∗[s(t), u(t)] := q∗[s(t), u(t)] + α{r(t) + γmax
u

q∗[s(t+ 1), u]− q∗[s(t), u(t)]}
(1.13)

So, in Q-learning, ψ[s(t), u(t)] = r(t) + γmaxu q
∗[s(t+ 1), u] which is indeed

the best immediate evaluation of Q∗[s(t), u(t)] the agent can access at time
t+ 1 (see equation 1.10).

1.2.3 Policy design in neurodynamic programming

It has been proved (Watkins & Dayan, 1992) that, if the agent and the
environment interact for an infinite amount of time and if the learning rate
is a decreasing function of time, then Q-learning converges to Q∗ no matter
the policy actually followed by the agent given that any state-action pair (s, u)
is sufficiently visited.

It means that the agent must use a stochastic policy. But, as we said,
stochastic policies are most of the time suboptimal. This is the explora-
tion/exploitation dilemma faced by all the agents using NDP (Sutton &
Barto, 1998). They must choose between exploiting, e.g. using an opti-
mal deterministic policy, and exploring, e.g. using a non-optimal stochastic
policy. In the first case, they will not improve their knowledge of the value
function and so, will be unable to improve their performance. In the second
one, they will act sub-optimally.

Solutions to this dilemma are not handled by NDP which are mere pre-
diction methods but by a mechanism deriving the agent’s policy from the
computation realized by the NDP algorithm. The design of such a mecha-
nism is currently more an art than a science (Sutton & Barto, 1998).

If the agent is storing the Q-values for each state of the environment and
for each control (if it is using Q-learning, for instance), two popular solutions
are ε-greedy policies and Boltzmann exploration (also called softmax action
selection).
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Figure 1.1: General organization of an actor/critic architecture

A greedy policy is simply a policy which picks the control with the highest
Q*-value. An ε-greedy policy does exactly the same except that there is a
small probability ε on each trial that it picks the control at random. In
this way, the agent’s behavior stays close to an optimal deterministic policy
while keeping enough variability to improve its knowledge of the optimal
value function.

A disadvantage of an ε-greedy policy is that it picks the controls at ran-
dom, making no distinction between controls for which the prediction of
reward is poor and controls for which it is higher. Boltzmann exploration
does this. The following equation

p(u′|s) =
eQ(s,u′)/T∑

u∈U eQ(s,u)/T
(1.14)

is used to determine the probability of emission of a control in a given state.
T is a free parameter called the temperature of the system. The higher it is,
the more stochastic control selection is. On the other hand, when T → 0,
only the control with the highest Q-value is emitted. During the initial stage
of training, T is set to a high value, hence favoring exploration. As learning
progresses, it is slowly decreased, favoring more and more exploitation until
it comes close to 0 and the agent learns no more (Sutton & Barto, 1998).

Another popular solution is a special kind of agent architecture called an
actor/critic architecture (Barto, Sutton, & Anderson, 1983; Sutton & Barto,
1998). As it is shown in Figure 1.1, it is composed of two parts.
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• First, there is the critic which uses TD(λ), a NDP algorithm designed
to evaluate V π (Sutton, 1988; Sutton & Barto, 1998). Its learning
equation is

vπ(s) := vπ(s) + α {r(t) + γvπ[s(t+ 1)]− vπ[(s(t)]} eλ(s, t) (1.15)

which is just the standard NDP equation applied to the evaluation of
V π with ψ[s(t)] = r(t) + γvπ[s(t + 1)]. This is very similar to the ψ
term used in Q-learning. This is not surprising because Q-learning and
TD(λ) both belong to a wider family of NDP algorithms called tem-
poral difference methods (Sutton & Barto, 1998) which all use about
the same kind of ψ. Their main characteristic is that they update
their prediction on a real-time basis which is not the case for all the
NDP methods (see, for instance, the Monte Carlo methods in Sutton
& Barto, 1998).
The only new thing here is eλ(s, t), the eligibility trace of state s at time
t. The eligibility trace of a state increases when a state has been visited
(e.g. when s(t) = s) and decreases otherwise (e.g. when s(t) 6= s). As
long as it is positive, the value of the state can be updated as shown
in the above equation. In this way, states recently visited can get some
credit for the current amount of reward collected (see Sutton & Barto,
1998 for a fuller discussion of eligibility traces and especially of the
way they fill the gap between temporal difference methods and Monte
Carlo techniques). The decay of an eligibility trace is controlled by a
single free parameter called λ (this is actually the λ term appearing
in the name TD(λ)). The higher λ, the slower the decay of the eli-
gibility trace. When λ = 0, only the state just visited is eligible for
modification. There are several formulas describing how λ controls the
temporal evolution of eligibility traces. For instance, Singh and Sutton
(1996) have studied the property of so-called replacing eligibility traces
whose temporal evolution is governed by the following equation

eλ(s, t) =

{
1 if s = s(t)

γλeλ(s, t− 1) if s 6= s(t)
(1.16)

Other formulas exist (see Sutton & Barto, 1990, 1998 for some exam-
ples). Which one is the most appropriate depends on the characteristics
of the MDP the agent has to solve. Note that eligibility traces is a tool
that can be added to any temporal difference method. So, for instance,
adding eligibility traces to Q-learning, we get a new algorithm, Q(λ),
whose learning equation is

q∗(s, u) := q∗(s, u)+α{r(t)+γmax
u

q∗[s(t+1), u]−q∗[s(t), u(t)]}eλ(s, u, t)

(1.17)
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If we set λ to 0, we get Q(0) which is nothing but the standard Q-
learning algorithm we have described above.

• The other part of an actor/critic architecture is the actor which im-
plements the policy. It follows a strict “law of effect” rule for action
selection: actions that have been followed by a positive reward tend
to be emitted more often while others tend to be emitted less often.
But, it is the TD learning signal r(t)+γvπ[s(t+1)]−vπ[s(t)] generated
by the critic to correct its predictions which is used by the actor to
modulate its behavior.

The way an actor/critic architecture works is very intuitive. Suppose the
actor switches to a new policy. If it is worse than the old one, the critic will
over-predict the amount of reward collected, hence generating a negative TD
learning signal that will punish the actor’s behavior. On the other hand,
if it is better than the old one, the critic will under-predict the amount of
reward collected and hence, will generate a positive TD learning signal that
will reward the actor’s behavior.

The exact architecture of the actor is highly variable from one implemen-
tation to another and often depends on the characteristics of the task the
agent has to master. So, actor/critic architectures do not completely solve
the exploration/exploitation dilemma but they provide a very simple, elegant
and efficient way to make the prediction and policy design stages interact.

1.3 Reinforcement learning and function ap-

proximation

1.3.1 The curse of dimensionality

Until now, we have supposed that the agent records the situation value or
the action-situation value for each state and/or each control. So, in the
limit of the convergence properties of the DP or NDP algorithm used, the
exact situation or action-situation value for a state or a state-action pair can
be known. This way of representing the optimal value function is called a
look-up table representation because it is similar to have a table whose rows
and columns are the states and actions while the values of the optimal value
function are written in the cases.

But, such a kind of representation cannot be used if |S| and/or |U | are
too large. This is the curse of dimensionality. For DP, even a single iteration
of equation (1.10) would take too much time and so, conditions described in
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equation (1.11) would never be met. For some applications, it would even be
impossible to compute V ∗

1 . For NDP, some states will never be sufficiently
visited and some actions will never be sufficiently emitted in some states for
the behavior of the agent to be optimal. Up to a point, some states will never
be visited at all and some actions will never be emitted at all.

To overcome the curse of dimensionality, the agent must be able to make
inferences based on its current experience with the environment. This cannot
be done with a look-up table representation of the optimal value function. It
requires the use of a function approximation architecture.

A function approximation architecture A is able to approximate any func-
tion f having a specific functional form F between two sets X and Y if the
values of a set of free parameters w are set appropriately. This is gener-
ally done through a training stage where a learning algorithm optimizes the
approximation done by A on a subset Xt ⊂ X (called the training set) ac-
cording to a given performance criterion. After that training stage, A is able
to approximate f for any x ∈ X even if x /∈ Xt.

The quality of these approximations is determined by the values of wi

which are themselves determined by the quality of the learning algorithm
used to set them and by Xt. For instance, if the elements of Xt are not
representative of X, then the value of the wi will not be set appropriately to
approximate f no matter the quality of the learning algorithm (see Bishop,
1995 for a deeper discussion of this topic). Another problem could arise if
f has not the functional form approximated by A. For instance, if A only
approximates linear functions and f is nonlinear, then, A will only be able
to produce linear approximations of f .

Various function approximation architectures exist: decision trees, poly-
nomial approximation,... We will concentrate here on one of the most popular
architectures: artificial neural networks (ANN). These are programs whose
functioning is roughly based on the one of the nervous system (Bishop, 1995;
Haykins, 1999; McCulloch & Pitts, 1943). They have attracted a wide in-
terest in recent years in cognitive science and artificial intelligence, because
of their promises for technological applications and as models for brain and
cognitive processes. They are the most appropriate function approximation
architecture for RL and actually, the development of NDP is historically
linked to ANN (see, Sutton & Barto, 1981).

1.3.2 Artificial neural networks

Figure 1.2 displays the schema of a standard artificial neuron, the basic
processing unit in an ANN. Let’s call this neuron neuron j. The algorithm
determining the output of the neuron runs as follows:
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Figure 1.2: Schema of a standard artificial neuron

1. The neuron receives an input coded as a n-dimensional vector x =
[x1, x2, ...,
xi, ..., xn]T . Each component xi of the vector could be the output of a
neuron i connected to neuron j. In such a case, the same algorithm
which determines the output of neuron j determines the output of
neuron i. They could also come from an input neuron i connected to
neuron j. Input neurons are a bit different from other neurons since
their output is directly set by an external stimulus.

2. To each neuron i is associated a synaptic weight wij. These weights are
the components of a weight vector wj = [w1j, w2j, ..., wnj]

T .

3. The input vector x and the weight vector w determine the activation
level aj of neuron j. We have 1

aj = w0 + w.x

=
n∑

i=0

wixi (1.18)

1Usually, w0 is not actually a weight but a bias fixed to a constant value and which
cannot be changed by the learning algorithm. It can be fixed to 0. For this bias to have
an impact on the activation level of the neuron, x0 is fixed to 1.
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Figure 1.3: Schema of a feedforward network or perceptron

4. aj is passed into an activation function g to produce the output y of the
neuron. g can be linear, nonlinear or even stochastic, only determining
the probability that the neuron changed its state, from active (y = 1)
to inactive (y = 0) or vice versa. This output is then sent to other
neurons or to the environment if the neuron is an output neuron.

Neurons like the one just described are connected to form networks. The
way neurons are connected together defines the network architecture. The
two most common architectures for function approximation are radial basis
function networks and feedforward networks (Haykins, 1999; Bishop, 1995).
We will only consider feedforward networks here since they are the most
widely used.

Figure 1.3 shows the general organization of a feedforward network or
perceptron. Its neurons are organized into layers : any neuron from layer
i − 1 is connected to any neuron from layer i but no neuron from layer i is
connected to a neuron from layer i−1. If the network has only two layers, an
input layer and an output layer, it is a one-layered feedforward network or a
simple perceptron. If it has additional hidden layers between the input and
the output layers, it is a multilayered feedforward network or a multilayered
perceptron.

The first layer is the input layer. The activation levels of its neurons are
set by a n-dimensional input vector. The activations of the input neurons
are then used to determine the outputs of the neurons from the first hidden
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layer (if there is such a layer) which are used to determine the output of the
second hidden layer (if there is such a layer) and so on until the output layer
is reached.

Suppose the input layer has n neurons and the output layer has m neu-
rons. Then, the network can be seen as implementing a mapping from <n to
<m. To each n-dimensional input vector x whose components are the acti-
vation level of the n input neurons, the network associates a m-dimensional
output vector whose components are the output of the m output neurons.
The form of the mapping that a perceptron can implement depends on the
activation function of its neurons and upon its architecture e.g. the number
of layers and the number of neurons in a layer. For instance, a linear per-
ceptron, e.g. a simple perceptron whose neurons have only linear activation
functions, can only approximate linear functions (Minsky & Papert, 1969).

By adjusting the weights of the network with a learning algorithm, a per-
ceptron can be used to approximate a specific function f . Suppose we want
a perceptron with n input neurons and m output neurons to approximate
a specific function f : <n → <m which associates to any x ∈ X ⊂ <n a
m-dimensional vector f(x) ∈ <m. We will also suppose that f can be appro-
priately represented by the neural network. Since X is a potentially infinite
set, a finite training set Xt ⊂ X is created. We have |Xt| = N and the value
of f(x) for any x ∈ Xt is known. To any x ∈ Xt, the network produces an
output o(x). The goal of the learning algorithm is to set the value of the
weights in the network so as to minimize as much as possible the differences
between f(x) and o(x) for all x ∈ Xt.

For this, we need a measure of the performance of the network, how good
it is at approximating f on Xt. One of the most popular criteria is the
average squared error energy ξ

ξ =
1

N

∑
x∈Xt

ξ(x) (1.19)

with

ξ(x) =
1

2

m∑
i=1

[fi(x)− oi(x)]
2 (1.20)

where fi(x) and oi(x) are respectively the ith component of f(x) and o(x).
It can be shown (Haykins, 1999) that a way to minimize ξ is to modify the
weight wij between neuron i and neuron j each time an input vector x ∈ Xt

is presented with the generalized delta rule

wij := wij + αδj(x)yi(x) (1.21)

where α is a learning rate, yi(x) is the output of neuron i when vector x is
presented at the input layer and δj(x) is the local error gradient for neuron
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j e.g. a measure of the difference between its current output and the output
it should have if o(x) = f(x). If neuron j is an output neuron, then

δj(x) = fj(x)− yj(x) (1.22)

while, if neuron j is a hidden neuron (e.g. belongs to a hidden layer), we
have

δj(x) = g′[aj(x)]
∑
k∈K

wjkδk(x) (1.23)

where g′ is the first derivative of the activation function of neuron j, aj(x) is
the activation level of neuron j when x is presented at the input layer and
K is the set of neurons to which neuron j is connected in the next layer (e.g.
either the next hidden layer or the output layer).

Equation (1.21), (1.22) and (1.23) form the basis of the popular error
backpropagation algorithm (Haykins, 1999; Rumelhart, Hinton, & Williams,
1986) used to train weights in multilayered perceptrons: after o(x) has been
computed, the local error gradients are first computed for the output neurons
and used to change the weights between the output neurons and the neurons
from the last hidden layer. Knowing the local error gradients for the output
neurons allows the computation of the local error gradients for the last hidden
layer which allows the modification of the weights between this layer and the
penultimate hidden layer and so on until the first hidden layer is reached.
The triggering event is the ability to compute the local error gradients for
the output neurons.

If the network is a simple perceptron, only equations (1.21) and (1.22)
are necessary. If, moreover, the activation function of the neurons is linear,
combining these two equations leads to

wij := wij + α[fi(x)− yj(x)]xi

:= wij + α

[
fi(x)−

n∑
i=0

wijxi

]
xi (1.24)

which is known as the delta rule, the LMS algorithm or the Widrow-Hoff rule
(Bishop, 1995; Haykins, 1999; Widrow & Hoff, 1960).

1.3.3 Neurodynamic programming and artificial neu-
ral networks

How can a feedforward network be used to evaluate the optimal value func-
tion? The function to be evaluated is either V π, V ∗, Qπ or Q∗. Let’s take
the example of evaluating V π. Up to now, we do not care about the number
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of layers of the network. It has n input neurons and a single output neuron
which returns an approximation of V π.

First, each state s ∈ S must be encoded as a n-dimensional vector, which
will then be used as an input for the network, through a preprocessing stage
(Bertsekas & Tsitsiklis, 1996; Bishop, 1995). It can be defined as a mapping
x with

x : S → <n

: s 7→ x(s) = [x1(s), x2(s), ..., xn(s)]T (1.25)

This preprocessing stage is very important. First, it reduces the dimension-
ality of the input space, hence avoiding the curse of dimensionality. This
reduction of the problem complexity also introduces correlations between
the states which will be used by the network for generalization. Second, it is
a way of introducing prior knowledge about the structure of the state space
into the system. Various techniques have been developed (see Bishop, 1995
for a coverage of these various techniques as well as for a deeper discussion
of the role and of the importance of input preprocessing in neural network
training).

x(s) is then used to produce an output o(x). So, the network is imple-
menting the function

o : <n → <
: x 7→ o(x) (1.26)

More shortly, if we introduce the function h = x ◦ o , the network can be
considered as implementing

h : S → <
: s 7→ h(s) (1.27)

We will use the generalized delta rule to set the weights of the network
so that h(s) would be as close as possible to V π(s) for all s. To do this, we
just need to be able to compute the local error gradient δ(s) for the output
neuron i. If we apply equation (1.22), then the equation for δ(s) should be

δ(s) = V π(s)− h(s) (1.28)

but we do not know the value of V π(s). So, instead of the real value V π(s),
we must use an approximation ψ(s) of V π(s). This is exactly what is done by
NDP algorithms (see equation 1.12). For instance, TD(0) (e.g. TD(λ) with
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λ = 0) was using ψ[s(t)] = r(t) + γvπ[s(t + 1] as an estimation of V π[s(t)]
(see equation 1.15). So, using this formula in the context of a feedforward
network, equation (1.28) becomes

δ[s(t)] = r(t) + γh[s(t+ 1)]− h[s(t)] (1.29)

This local error gradient for output neurons provides the basis for a new
algorithm called approximate TD(0) (Sutton & Barto, 1998) which can be
used to set the weight of a feedforward network. For instance, if the network
is a linear perceptron, combining equation (1.15) with equation (1.24) leads
to

wi := wi + α

[
r(t) + γ

n∑
i=0

wixi[s(t+ 1)]−
n∑

i=0

wixi[s(t)]

]
xi[s(t)] (1.30)

To get an approximate version of TD(λ), we just need to add eligibility traces
to the input neurons and to use them in the above equation instead of the
activation level xi[s(t)]. We have

wi := wi + α

[
r(t) + γ

n∑
i=0

wixi[s(t+ 1)]−
n∑

i=0

wixi[s(t)]

]
eλ(i, t) (1.31)

The same reasoning would allow to have an approximate version of ac-
tually any NDP algorithm. Let’s take, for instance, Q-learning. To get an
approximate Q-learning algorithm, let’s induce an order on U so that we get
controls u1, u2, ..., um with |U | = m. In this way, we can redefine the Q*
function to ease its approximation by a perceptron. We have

Q∗ : S → <m

: s 7→ Q∗(s) = [Q∗(s, u1), Q
∗(s, u2), ..., Q

∗(s, um)]T (1.32)

The perceptron we will use to approximate this function will have n output
neurons n1, n2, ...nm, each one trying to evaluate Q∗(s, ui) for a given ui ∈ U .
To make things simple, we will assume that output neuron i is trying to
approximate Q∗(s, ui) for the ith neuron. We will also introduce the function
A(ni, uj) which is equal to 1 if output neuron i is keeping track of the Q*-
value for control uj and 0 if not. This perceptron can be considered as
implementing the function

h : S → <m

: s 7→ h(s) = [h1(s), h2(s), ..., hm(s)]T (1.33)

where hi(s) is the output of neuron ni when state s is presented as an input.
So, if the same reasoning as the one used to derive the local error gradient
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for approximate TD(λ) is used, we find that the error gradient δ[s(t), ni] for
each output neuron ni used by the approximate Q-learning algorithm is

δ[s(t), ni] =
{
r(t) + γmax

j
hj[s(t+ 1)]− hj[s(t)]

}
A[ni, u(t)] (1.34)

Because of A[ni, u(t)] term, only the connexions to the output neuron asso-
ciated with the control just emitted are modified.

To summarize, the main differences between approximating the optimal
value function with a feedforward network and standard function approxi-
mation with such networks are the following ones:

1. Evaluations of the optimal value function obtained through prompts of
the environment by the agent are used to compute the error gradient
at the network’s output layer instead of the real values of the opti-
mal value function which are, of course, unknown, since it is what the
algorithm is trying to compute. Actually, the quality of the approxi-
mations made by a network after it has been trained on the training set
Xt is usually evaluated by seeing how good it is at evaluating the func-
tion f on another subset Xg ⊂ X in a generalization test (see Bishop,
1995 and Haykins, 1999). But, here, since the values of the optimal
value function are unknown outside the network’s approximation, it is
impossible to test the quality of these approximations.

2. The training set Xt is unknown. Weights are updated by the learning
algorithm on a real time basis as indicated by the introduction of time
in equations (1.29) and (1.34).

Finally, note that a look-up table representation of the optimal value func-
tion could be considered as a special case of a neural network representation.
Suppose that we induce an order on S like we did on U so that we have
state s1, s2, ..., si, ..., sn with |S| = n. We will use the following preprocessing
mapping

x : S → <n

: si 7→ x(s) = [x1(si), ..., xj(si), ..., xn(si)]
T (1.35)

with xj(si) = 1 if i = j and 0 otherwise. The reader can check for himself
that if we use this preprocessing mapping with a linear perceptron designed
to compute V π and if we use equation (1.31) to set the weights of the network,
then this approximate version of TD(λ) is equivalent to the initial version
(equation 1.15) and wi = vπ[si].
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1.4 Conclusion

RL algorithms have become increasingly popular in artificial intelligence,
mainly because of their success in applied settings (see, for instance, Crites
& Barto, 1996; Dorigo & Columbetti, 1994 and Tessauro, 1994). Moreover,
MDP bear striking similarities with the notion of contingencies we intro-
duced at the beginning of this article. The elements of the organism’s en-
vironment are the states of the MDP while the dependency relations (that
is to say, the contingencies) are the transition probability p(s′|s, u). Pavlo-
vian contingencies in a MDP appear when, for any u1 ∈ U and u2 ∈ U ,
p(s′|s, u1) = p(s′|s, u2).

So, if any environment can described as a set of Pavlovian and operant
contingencies, it is very tempting to assume that any set of Pavlovian and
operant contingencies can be modelized by a MDP. Hence, if we assumed
that behavior is the output of an optimization process (as many theorists in
behavioral ecology, economics, evolutionary biology or psychology assume.
See, for instance, Parker & Maynard Smith, 1990; Charnov, 1976 or Baum,
1981), this would mean that RL algorithms could at least be used to compute
the behavior of an animal in a given situation. If this is possible, a more
radical claim would be that animals are actually using some kind of RL
algorithms to adapt their behavior to their environment. Indeed, the next
section will review researches pointing out to striking similarities between
adaptive mechanisms in animals and some NDP algorithms.
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Chapter 2

Applications to conditioning

2.1 Conditioning: basic procedure and ter-

minology

In the first part of this text, we had proposed an introduction to reinforce-
ment learning and Markovian decision problems. We will now review their
applications to conditioning. We begin by a review of the basic procedure
and terminology in Pavlovian and operant conditioning since we will often
used it in what follows.

2.1.1 Operant conditioning

Operant conditioning is a procedure developed by Skinner (1938). It is the
main experimental protocol for the study of how organisms adjust their be-
havior to an operant contingency. It simply consists of the creation of an
operant contingency and of the recording of its effect on a target behavior.

In the basic procedure, the operant contingency is created between a
behavior and a consequence. This is the so-called two-term contingency. The
behavior is called the operant, operant behaviors being the set of behaviors
that can be modulated by their consequences. If the consequence increases
the probability of emission of the operant, then it is a reinforcer. Making
a reinforcer contingent to an operant is called reinforcement. The operant
is then said to be reinforced. If, on the contrary, the consequence reduces
the probability of emission of the operant, it is called a punisher. Making a
punisher contingent to an operant is called punishment. The operant is then
said to be punished.

Sometimes, a two-term contingency between an operant and a conse-
quence is only effective when a given stimulus is present in the environment.
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In such a case, we have a three-term contingency. If an animal learns that a
given two-term contingency is only effective in the presence of a given stim-
ulus (so that the probability of emission of the operant is increased or de-
creased only in the presence of that stimulus), then the stimulus has become
a discriminative stimulus. The related training procedure is called a dis-
crimination. More complex operant conditioning procedures are composed
of sequences of three-term and two-term contingencies.

Discriminative stimuli predicting reinforcement can usually be used as
reinforcers while discriminative stimuli predicting punishment can usually
be used as punishers. Since these new functions of the stimuli are emergent
products of the training procedure, they are said to be conditioned reinforcers
and punishers. This contrasts with stimuli whose reinforcing or punishing
properties seem to be innate rather then learned (such as food for an hun-
gry animal, for instance) and which are said to be primary reinforcers and
punishers.

Operant conditioning can be adapted to a wide range of species but, the
vast majorities of the studies have been conducted, mainly for practical rea-
sons, on rats and pigeons, placed in an experimental cage called a Skinner
box. The animal is free to move in the box so that the number of manipula-
tions of the animal by the experimenter is minimized. Moreover, electronic
devices allow the automatic recording of responses and reinforcers. Operant
responses are usually lever pressing for rats and key pecking for pigeons. An-
imals are hungry or thirsty so that food and water can be used as reinforcers.
Electric shocks are the most widely used punishers. The effect of the conse-
quence on behavior is evaluated through its impact on the rate of responding
of the animal, e.g. the number of responses emitted per unit of time.

Since Skinner’s early works in the thirties, a vast amount of data has been
collected on the way animals adjust their behavior to their consequences (see
Staddon & Honig, 1977; Hearst, 1988; Staddon, 1983 and Williams, 1988 for
reviews). For instance, a wide range of studies has been devoted to rein-
forcement schedules e.g. the way the reinforcer is delivered as a function of
responding. In ratio schedules, a certain number of responses (the ratio of
the schedule) must have been emitted for the reinforcer to be delivered. In
fixed-ratio schedules (FR), this number is fixed while in variable-ratio sched-
ules (VR), it varies around a mean determined by the ratio of the schedule.
In interval schedules, a minimal time lapse (the interval of the schedule)
must have passed since the last reinforced response before a new response
can be reinforced. In fixed-interval schedules (FI), the interval is fixed while
it varies around a mean (determined by the interval of the schedule) for
variable-interval schedules (VI). All those schedules have different and char-
acteristic effects on behavior (Fester & Skinner, 1957; Williams, 1988; Zeiler,
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1977). Performance under variable schedules is regular while it is not under
fixed schedules. Moreover, response rate is higher under ratio schedules than
under interval schedules.

2.1.2 Pavlovian conditioning

Just as operant conditioning is the main experimental procedure for the study
of operant contingency, Pavlovian conditioning (Pavlov, 1927) is the main
experimental procedure for the study of Pavlovian contingencies.

In a typical Pavlovian experiment, a neutral stimulus (NS), eliciting no
specific reaction from the animal, is followed by an unconditional stimulus
(US) which triggers an unconditional response (UR). For instance, in Pavlov’s
famous experiments with dogs, a tone (NS) was followed by the presentation
of food powder in the mouth (US) that caused salivation (UR). The relation
between the US and the UR is called an unconditional reflex. After several
NS-US pairing, the NS alone triggers a response which is, most of the time,
similar to the UR. So, in Pavlov’s experiments, the dogs were salivating once
they heard the tone. The NS is then no longer neutral and is called, from
that point, a conditional stimulus (CS) while the response it now elicits is
called a conditional response (CR). The relation between the CS and the CR
is called a conditional reflex.

None modern study of Pavlovian conditioning is using dogs and food
powder. Most of them are conducted with rats, pigeons and rabbits. (Hearst,
1988)

• The procedure most frequently used with rats is called a conditioned
suppression procedure. The rat is first trained to press a lever for
food under a VI (VI schedules can sustain a very high and regular rate
of responding which can be used as a baseline to assess the effect of
various experimental manipulations). A light (NS) is then followed by
the delivery of an electric shock (US). After several pairings, the light
causes a decrease in the rate of responding, supposed to be caused by
fear (CR).

• In pigeons, the procedure used is called autoshaping. The pigeon is
put in a Skinner box with a response key and a feeder on a wall. The
response key is illuminated (NS) and this is followed by the delivery
of food in the feeder (US). Being hungry, the pigeon pecks at the food
(UR). After several pairings, the pigeon will peck at the illuminated
response key (CR).
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• The procedure used with rabbits is the conditioning of the nictating
membrane response (NMR conditioning). The nictating membrane is a
kind of second eyelid which does not exist anymore in humans. Animals
like the rabbit can make it sweep over the eye by slightly retracting
its eyeballs into the skull. This is the nictating membrane response
(NMR). It is a UR triggered by US similar to the ones that would trigger
an eye blink 1. In NMR conditioning, the rabbit is immobilized, its eyes
kept wide open by a machine while the movements of the nictating
membrane are recorded. The NS is generally a tone or a light while the
US is a puff of air. After several NS-US pairings, the NS alone is able
to trigger the NMR.

• Finally, a few studies on humans are using tones as NS and eye blink
or the galvanic skin response as UR 2.

2.2 Pavlovian conditioning and neurodynamic

programming

2.2.1 The Rescorla-Wagner model

The learning process involved in Pavlovian conditioning was once seen as a
very simple and elementary stimulus-response binding process. This is not
the case any more. Pavlovian conditioning is now regarded as a procedure
allowing an experimental investigation of the way animals learn about the
causal structure of their environment, e.g. about the way animals learn what
follows what and when (Wasserman & Miller, 1997). This is why, in most
Pavlovian studies on humans, the subjects are simply exposed to successions
of stimuli and are then asked to infer rules allowing them to predict what
follows what (Schanks, 1994). The learning process is no more considered
as simple but, on the contrary, as quite complex and sophisticated. One of
the causes for this major shift in the opinion about Pavlovian conditioning
could be found in the model proposed in 1972 by Robert Rescorla and Alan
Wagner.

1Actually, in some studies, it is the eye blink response and not the NMR which is used
as a UR. But, movements of the two eyelids are usually not independent while movements
of the two nictating membranes are. So, the response of the second nictating membrane
can be used as a control condition to assess the efficiency of conditioning.

2The galvanic skin response is a depolarization of the skin caused by emotionally loaded
stimuli or by non-aversive very small voltage electric shocks
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In the Rescorla and Wagner (1972)’s model, each CS3 has an associative
value V (CSi), supposed to be proportional to the amplitude of the CR or
to the proportion of CRs triggered by the CS. A typical Pavlovian condi-
tioning session is a succession of several trials, each trial being composed
of the presentation of one or several CSs (or even, no CS) followed by the
presentation (or the non-presentation) of the US. On each of these trials, the
associative values of all the CS presented on a trial are updated according to
the following equation

V (CSi) := V (CSi) + α

[
r(t)−

n∑
i=1

V (CSi)

]
(2.1)

where n is the number of CS presented on that trial, r(t) is the intensity of
the US on that trial and α is a learning parameter.

Suppose there is only one CS. On each trial, its associative value is up-
dated according to equation (2.1) until V (CS) = r: the associative value of
a CS is a prediction of the intensity of the US. So, according to Rescorla and
Wagner (1972), the animal tries to predict the intensity of the US based
on the CSs present in the environment. These predictions are updated
when they are not confirmed e.g. when the animal is surprised, e.g when
r(t)−∑n

i=1 V (CSi) 6= 0.

Experimental supports

The Rescorla-Wagner (RW) model is certainly one of the most influential
models of animal learning (Siegel & Allan, 1996). One reason for this popu-
larity is its ability to synthesize numerous puzzling results about Pavlovian
conditioning. Here are some examples.

In a blocking experiment (Kamin, 1969), a stimulus A is conditioned with
a first group of subjects while another group receives no training. Then, both
groups are conditioned with a compound stimulus AB composed of stimuli
A and B. Finally, each component of the compound stimulus is presented
separately to check if it triggers a CR. While in the second group, both A
and B trigger it, only A does so in the first group. It is said that the prior
conditioning of A has blocked the conditioning of B. According to equation
(2.1), this happens because V (A) has been set to r during the prior condi-
tioning of A: this stimulus totally predicts the US. So, when A and B are

3The Pavlovian terminology, although coherent, is a bit confusing since a given stimulus
is sometimes called a NS or a CS, depending on the behavioral reactions it elicits. Actually,
researchers tend to be a bit loose on the vocabulary and call a NS a CS from the beginning,
even if it fails to elicit a response at the end of the training. For clarity, we will sometimes
do the same, like in this case.
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Table 2.1: Evolution of the associative value of the stimuli according to the
Rescorla-Wagner model during the first five trials of an analogue of Wagner
et al (1968)’s first condition. For simplicity, we have assumed that AB trials
alternate with AX trials and that the US always follows the presentation of
AB. α = 0.25.

Trials
AB1 AX1 AB2 AX2 AB3

V(A) 0 0.25 0.187 0.328 0.262
V(B) 0 0.25 0.39
V(X) 0 -0.062
US Intensity 1 0 1 0 1
Prediction 0 0.25 0.437 0.266 0.653
Error 1 -0.25 0.562 -0.266 0.348
New V(A) 0.25 0.187 0.328 0.262 0.348
New V(B) 0.25 0.39 0.477
New V(X) -0.062 -0.129
V(B)-V(A) 0 0.062 0.126

presented together, the increment in the associative value of B, V (B), is
V (B) = V (B) + α[r − V (A) + V (B)] = 0 and so, the associative value of B
never increases. A prediction that can be drawn from this analysis is that,
if the intensity of the US is increased during the conditioning of AB, then
A will no more fully predict the US . So, r − V (A) + V (B) will be positive
and so, B will be conditioned. This phenomenon, called unblocking, has been
confirmed experimentally (Kamin, 1969).

In a typical Pavlovian procedure, P (US|CS), the probability that the US
is presented if the CS has been presented, is equal to 1 while P (US|CS), the
probability that the US is presented while the CS has not been presented,
is equal to 0. Rescorla (1968) has manipulated this last probability, varying
it from 0 to 1 while maintaining P (US|CS) equal to 1. He discovered that
the higher P (US|CS), the less important the magnitude of the CR triggered
by the CS was. In the extreme, when P (US|CS)=1, the CS did not trigger
any CR at all. This is called a contingency effect. The explanation of this
phenomenon by the RW model is similar to the one given for blocking, the
role of the blocking stimulus A being played by the context of the experiment.

An experiment by Wagner, Logan, Haberlandt, and Price (1968) perfectly
illustrates the sophistication of the learning process in Pavlovian condition-
ing. Wagner et al. (1968) used three stimuli A, B and X. In a first group,
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Table 2.2: Evolution of the associative value of the stimuli according to the
Rescorla-Wagner model during the first five trials of an analogue of Wagner
et al (1968)’s second condition. As in Table 2.1, we have assumed that both
kinds of trials alternate and that the US always follows the presentation of
a compound stimulus. α = 0.25.

Trials
AB1 AX1 AB2 AX2 AB3

V(A) 0 0.25 0.437 0.516 0.59
V(B) 0 0.25 0.33
V(X) 0 -0.187
US Intensity 1 1 1 1 1
Prediction 0 0.25 0.688 0.703 0.92
Error 1 0.75 0.312 0.297 0.08
New V(A) 0.25 0.437 0.516 0.59 0.61
New V(B) 0.25 0.33 0.35
New V(X) 0.187 0.262

the compound stimulus AB was followed by the US half of the time while
it was never the case for AX. So, for this group, AB predicted the US while
AX did not but B by itself was a sufficient predictor. In this group, only B
triggered a CR. In another group, the US followed both AB and AX in 50
per cent of the trials. All the stimuli predicted the US with equal efficiency
but it was less costly to keep track only of the presence or absence of A.
In this group, only A triggered a CR. These results are also explained by
the RW model. Consider Wagner et al. (1968)’s first condition where AB is
followed by the US but not AX. Table 2.1 shows how the associative values
of the stimuli evolve from trial to trial. The discrepancy between the value
of B and the value of A increases while the prediction error in AB trials
decreases. So, in the long run, B will fully predict the US and will block
further conditioning of A. The explanation for Wagner et al. (1968)’s second
condition is presented in Table 2.2. The value of A rapidly increases and is
much higher than the values of B and X. So, the conditioning of A is better
and, in certain conditions, it could even be the only stimulus triggering a
CR.

In superconditioning (Rescorla, 1971), a stimulus A is trained to be a
signal for the non-presentation of the US 4. Then a compound stimulus AB is

4Such a stimulus is a conditioned inhibitor. This is done by conditioning a stimulus C
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conditioned. Presented alone, B triggers a stronger CR than in other groups
where it has been conditioned alone or with another stimulus not trained as
a conditioned inhibitor. According to the RW model, this is because V (A)
is negative and so V (B) := r− V (A)− V (B) = r+ |V (A)| − V (B) which is,
of course, greater than r − V (B).

In over-expectation (Kremer, 1978), two stimuli A and B are trained
separately with the same US. Then, the compound AB is conditioned with
the same US as the one used to train A and B. Tested alone, both CSs trigger
a CR less important than the one they triggered initially. The explanation is
straightforward. Before the compound conditioning, we had V (A) = V (B) =
r and so, V (AB) = V (A)+V (B) = 2r. The US is clearly over-predicted and
the compound conditioning will reduce the associative value of both A and
B to r

2
so that V (AB) = r.

In addition to these phenomena, the RW model has been used to explain
data outside the field of Pavlovian conditioning (from category learning to
human causality judgements through interpersonal attraction. See Siegel
& Allan, 1996). Although it has not been unchallenged (Miller, Barnett,
& Grahame, 1995), it remains highly influential within the field of animal
learning and a lot of more recent and elaborated models are no more than
developments of the original RW model (see below, TD learning).

2.2.2 Neurodynamic programming and the Rescorla-
Wagner model

The TD model

Comparing equation (2.1) with equation (1.12) reveals that both of them are
describing the same learning process: in both cases, a prediction of reward
is compared to a better evaluation and the discrepancy between both is used
to update the reward prediction. But the analogy goes further.

The RW model can be implemented by a linear perceptron (Sutton &
Barto, 1981). This network is displayed in Figure 2.1. S, the state space
of the environment in which this network is embedded, is composed of all
the possible combinations of CSs that the network can encounter from one

with a US and then omitting it when presenting the compound stimulus AC. The animal
learns to omit the CR on AC trials. Moreover, if a stimulus D has been conditioned to the
US, the CR will also be omitted if the compound AD is presented. Conditioned inhibition
is easily explained by the RW model but it makes the false prediction that a conditioned
inhibitor will extinguish if it is presented alone. This is not confirmed experimentally.
To account for that, more advanced versions of the RW model (including the TD model
presented below) suppose that

∑n
i=1 V (CSi), the prediction of the US, cannot be negative.

Its lowest possible value is 0.
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Figure 2.1: A neural network implementation of the Rescorla-Wagner model

trial to another. So, for instance, if the network is used to modelize data
from an experiment where there are only two CS (A and B), then S =
[A,B, (A,B), ∅]. Each input neuron of the network codes the presence or
absence of a specific CS on a given trial: xi[s(t)], the activation level of the
ith input neuron on trial t where the configuration s(t) is presented to the
network is 1 if CSi is present during that trial, 0 otherwise. The weights of
the network code the associative values of the CSs so that wi, the strength of
the synaptic connection between the input neuron i and the output neuron,
is equal to V (CSi). The network’s input vector is updated at every trial. In
that context, the RW equation becomes

wi := wi + α

{
r(t)−

n∑
i=1

wixi[s(t)]

}
xi[s(t)] (2.2)

This is exactly equation (1.30) with γ = 0. So, the RW model of Pavlovian
conditioning is nothing more but approximate TD(0) applied to a linear
perceptron with γ = 0!

This is not surprising. The first works on NDP (Sutton & Barto, 1981)
explicitly took their inspiration from the psychology of animal learning and,
more specifically, from the RW model. When the first versions of TD(λ) were
introduced, they were presented as real-time extensions of the RW model5

(Sutton & Barto, 1981). Using TD(λ) in combination with a linear percep-
tron is actually known in the field of Pavlovian learning as the TD model of
Pavlovian conditioning (Sutton & Barto, 1990). It is considered as one of the

5For another real-time extension of the RW model using differential equations and used
in several models of Pavlovian and operant conditioning, see Schmajuk (1997)
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Figure 2.2: Evolution of the eligibility trace for a CS in the TD model

most successful theories of learning in a Pavlovian context (Moore & Choi,
1997).

The TD model is a one-layered network just like the one depicted in
Figure 2.1. The state space S for the environment in which the TD network is
embedded is defined in the same way as for this network. The only differences
are that each input neuron of the TD network codes the presence or absence
of a given CS at a given time t (and no more on a given trial t) and that
approximate TD(λ) algorithm for linear perceptrons (equation 1.31) is used
to set its weights instead of equation (2.2). Being a sophisticated version
of the RW model, the TD model is able to account for all the phenomena
explained by the original RW model (blocking, prediction sufficiency,... see
Sutton and Barto, 1981, 1990) but, because it is a real-time model, it can go
beyond these phenomena observed on a trial level to account for intratrial
ones. To do this, it uses a special kind of eligibility traces whose temporal
evolution is controlled by the following equation:

eλ(i, t) = eλ(i, t− 1) + (1− λ)xi[s(t)]− (1− λ)eλ(i, t− 1) (2.3)

Figure 2.2 shows how this eligibility trace evolves as a function of CS dura-
tion.
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Figure 2.3: ISI curves generated by the TD model using a 4-time step CS
and a 2-time step US. If the duration of a time step is fixed to 50 ms, these
correspond to stimuli used in NMR conditioning experiments. While in a
fixed-CS procedure, the duration of the CS is fixed, it only stops at the time
of US onset in a delay procedure.

Simulations of real-time features of Pavlovian conditioning

Here are some instances of intratrial phenomena explained by the TD model
(Sutton & Barto, 1990).

One important variable in Pavlovian conditioning is the interstimulus
interval (ISI) e.g. the interval between the onset of the CS and the onset
of the US. The function relating the ISI to the efficiency of conditioning
(measured as the proportion of CR generated by a CS) is an inverted U-
shaped function. It is null for negative or null ISI (the US begins before or
just at the same time as the CS), it then increases until an optimal ISI is
reached. From that point, it decreases and falls back to 0. This inverted U-
shaped function is found no matter the duration of the CS, the intensity of the
US, the kind of US or the intertrial interval although all these variables have
a significant impact on the absolute value of the ISI for optimal conditioning
(Kehoe, 1990). As Figure 2.3 shows, if the maximal US prediction generated
in the presence of a CS is considered to be proportional to the amount of
CR generated by that CS, the TD model reproduces the inverted U-shaped
ISI curves. It correctly predicts that the tail of the ISI curve observed in a
delay-CS procedure is longer than the one of the curve observed in a fixed-
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Figure 2.4: CR topography generated by the TD model if a tapped delay
line is added to the neuron perceiving the presence of the CS

CS procedure. These are not predictions made by all models (see Sutton &
Barto, 1990).

In trace conditioning, there is a delay between the offset of the CS and
the onset of the US. Conditioning is better if that delay is filled by another
stimulus (Kehoe, 1990). This phenomenon is simulated by the TD model
(Sutton & Barto, 1990).

If a stimulus A begins before another stimulus B and both of them finish
at the same time, then A will be much better conditioned to the US than
B (Kehoe, 1990). The TD model not only accounts for this phenomenon
but also makes the further prediction that this will happen even if B has
previously been conditioned to the US. This prediction was validated by
Kehoe, Schreurs, and Graham (1987).

A stimulus can also become a CS if it is paired with an already established
CS. Again, this is a feature of Pavlovian conditioning captured by the TD
model.

Simulations of the topography and timing of the conditional re-
sponse

The TD model is also able to account for key features of CR topography and
timing in NMR conditioning (Moore & Choi, 1997; Moore, Choi, & Brunzell,
1998). For this, it must be assumed that the temporal evolution of the CS is
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represented at the input layer of the network by a tapped delay line. This is
a common tool in neural network modeling practices for the representation
of temporal events (Haykins, 1999). In a neural network using a tapped
delay line, m lag units are associated with each primary input neuron whose
activation levels xi(t) are directly set by the input vector coming from the
environment. xj

i (t), the activation of the jth lag unit associated with the ith
input neuron, is xj−1

i (t−1), x0
i (t) being xi(t). In that context, the TD model

prediction for the amount of reward collected is

h[s(t)] =
n∑

i=1

wixi[s(t)] +
m∑

j=1

wj
ix

j
i (t)

 (2.4)

n is the number of primary input neurons and wj
i is the weight of the connec-

tion between the jth lag unit associated with the ith input neuron. These
weights are updated by the TD equation just like other weights. Actually,
if not for the way their activation level is set, lag units behave exactly as
regular input neurons. Indeed, each lag unit has its own eligibility trace.

Figure 2.4 shows a CR topography generated by the TD model with a
tapped delay line when a linear relation is assumed between the predictions
of the TD model and the degree of closing of the nictating membrane. These
simulated CRs reach their maximum amplitude just before the onset of the
US. This is a key feature of real CRs in NMR conditioning (Kehoe, 1990) and
a robust characteristic of CRs generated by the TD model (Moore & Choi,
1997) although it can disappear if the parameters of the model are fixed to
some specific values.

Complexifying a bit more the CS representation at the input layer, Moore
and Choi (1997) showed that the TD model could account for further features
of CR timing. They assumed that two other input neurons are associated to
a given CS: one is activated by CS onset while the other is activated by CS
offset. A tapped delay line is associated to each of these neurons. With these
modifications, the TD model accounts for CR timing observed by Desmond
and Moore (1991a) and Millenson, Kehoe, and Gormezano (1977) although
it has some problem with the CR topography.

• Desmond and Moore (1991a) exposed rabbits to a 150 ms CS whose
offset was followed by the US 200 ms later. Once conditioning was
established, they observed that a 150 ms CS triggered a single CR
pecking at 350 ms while a 500 ms CS elicited 2 CRs, one pecking at
350 ms and the other one at 550 ms. Desmond and Moore (1991a)
interpret their results by assuming that CS onset and CS offset are
two separate CSs. With a 150 ms, the CR triggered by CS onset is
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synchronized with the one triggered by CS offset and so, only one CR
is observed, while this is no more the case with a 500 ms CS and so,
two CRs are generated. Moore and Choi (1997) showed that the TD
model is able to account for these data. It also correctly predicts that
the peak of the CR generated by the 150 ms CS is greater than the
amplitude of the two CRs generated by the 500 ms CS. But, with a
500 ms CS, the peak of the second CR is lower than the peak of the
first one while the TD model predicts that both CRs have the same
amplitude.

• Using a delay-CS procedure (see the caption of Figure 2.3), Millenson
et al. (1977) made a US follow CS onset by either 200 ms or 700 ms,
both delays randomly alternating from one trial to the other. Then,
they presented to their rabbits a 200 ms CS or a 700 ms CS. The 200 ms
CS generated a CR peaking at 200 ms while the 700 ms CS generated
two CRs, one peaking at 200 ms and the other one at 700 ms. Once
more, Moore and Choi (1997) showed that this result was simulated
by the TD model. But, if the CR timing was well captured, there was
again a problem with the topographies. The TD model predicts that
the second CR with a 700 ms has a higher peak than the first one while
Millenson et al. (1977) observed that the amplitudes of the two CRs
were similar.

Finally, Moore et al. (1998) conditioned rabbits with a 800 ms CS whose
onset was followed by the US 300, 500 or 700 ms later. Intervals for US onset
randomly varied from one trial to the next one. They observed two response
strategies in their subjects. In what they called a failsafe strategy, the rabbit
seemed to follow the rule “close eye quickly and keep it closed until the
probability of US is minimal” while in the conditional expectation strategy,
the rule was ”close eye progressively as the conditioned probability of the
US increases to maximum”. With appropriate free parameter setting, the
failsafe strategy was generated by the TD model and so was the conditional
expectation strategy but only at the cost of a further complexification of
the CS representation by the addition of what Moore et al. (1998) called a
marking process. It would be too long to explain this new mechanism here.
The idea is that each lag unit has its own tapped delay line but its ability to
activate it is not fixed but can be changed through experience. See Moore
et al. (1998) for further details.
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Current limits of the TD model

So, at a behavioral level, the TD model is able to deal successfully with a
wide range of data. Moreover, we will see that its biological plausibility goes
even further since recent evidences are showing how it could be implemented
in the brain. But, of course, it is not perfect. To conclude this part on the
TD model, we would like to point out to two major defficiencies of current
implementations of the TD model.

The first problem is actually shared by many other models of conditioning
and is illustrated by a procedure called sensory preconditioning (Hall, 2002).
In the first stage of this procedure, a neutral stimulus S1 is followed by
another neutral stimulus S2. In the second stage, S2 is conditioned with
a standard US. Finally, in the test stage, S1 and S2 are presented alone.
As expected, S2 triggers a CR but this is also the case for S1. Obviously,
even if the first stage of the experiment has not induced any behavioral
change, the subject has learned something. A related experiment by Matzel,
Held, and Miller (1988) is even more spectacular. After the initial exposure
to the S1-S2 contingency, S2 is paired with a US according to a backward
conditioning procedure: the US is followed by S2. This is known to led to
very poor conditionng (check the ISI curve for negative ISI on Figure 2.3).
When presented alone, S2 triggers no CR but S1 does !

Althought these results perfectly fit within a prediction framework, the
TD model cannot account for them because it relies on two fundamental
assumptions:

• Animals try to predict rewarding or punishing events. That is to say,
they can learn Pavlovian contingencies only if one of the stimuli in-
volved in the contingency is a US or an already trained CS. But sensory
preconditioning clearly shows that animals are able to learn any kind
of Pavlovian contingencies.

• Animals can learn a Pavlovian contingency between two stimuli only
if they have been explicitely exposed to it. Again, these experiments
seem to indicate that animals are able to “infer” contingencies that
they have never directly experienced.

Future development in the TD model should remedy to these defficiencies6.
Maybe this could be done by using algorithms combining features of DP and

6The sensory subnetwork in the model by Donahoe, Burgos, and Palmer (1993) seems
to be a first step in that direction althought it remains unable to account phenomena
as the one described in the study by Matzel et al. (1988) as well as other instances of
“inferential” learning.
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NDP (Sutton & Barto, 1998)7.
The second problem has to do with the tapped delay line which is used

in recent versions of the TD model. As we saw above, this device allows the
TD model to account for CR timing but nobody seems to have noticed that
such a model is unable to account for the ISI effect. This is because only
the last lag units before US onset are conditioned. By manipulating the CS
onset-US onset interval, different lag units are conditioned and this is why
the CR is timed to US onset. But this also means that the interval between
the conditioned lag units and the US is always the same, no matter the CS
onset-US onset interval. Hence, there is no ISI effect in this model. Another
way to represent time in the TD model is necessary to overcome this major
problem.

2.2.3 Operant conditioning and the Rescorla-Wagner
model

It is surprising that the first works on NDP took their inspiration from Pavlo-
vian conditioning (Sutton & Barto, 1981) while NDP was designed to solve
MDP which bears striking similarities with the tasks faced by an animal in
an operant conditioning situation. It is even more surprising now that the
MDP framework is well established among RL scholars.

Now, a growing body of researchers is considering that the learning pro-
cess is the same in Pavlovian and operant conditioning (see, for instance,
Donahoe et al., 1993) and so, if NDP is a good model of Pavlovian perfor-
mance, it should also be a good model of operant performance. But there
are few direct evidences of a predictive mechanism like the one described
by the RW model and NDP in operant conditioning. This is because most
of the procedures which support the RW model in the context of Pavlovian
conditioning are difficult to transpose within an operant context.

Take blocking for instance. The operant analogue of a blocking result
would be to show that a response is not reinforced if it is emitted at the
same time as another response which already predicts the reinforcer. This
raises two problems. First, responses cannot really be emitted simultane-
ously. Second, the experimenter must find a way to manipulate the animal’s
behavior to force it to emit the blocked and blocking responses. This kind of
manipulation poses methodological problems and opens the door for alter-
native explanations. This is why demonstrations of blocking in an operant
context have not been convincing (see, for instance, Williams, 1975 and the

7These algorithms (such as Sutton’s Dyna architecture) are using NDP to build a model
of their environment which allows them to use DP to compute Bellman’s equation.
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criticism by Zanich & Fowler, 1978).
The same problems apply to most of the phenomena explained by the RW

model with the exception of the contingency effect. Just like the delivery of
the US in the absence of the CS reduces the efficiency of conditioning, the
delivery of noncontingent reinforcers reduces the rate of emission of the op-
erant (Hammond, 1980). This could be caused by the reinforcement of other
responses by the noncontingent reinforcers. These responses would then com-
pete with the operant and hence, reduce its rate of emission. To test this
hypothesis versus a RW type of explanation, Dickinson and Mulatero (1989)
trained two operant responses in rats. Each response was reinforced by a
different kind of reinforcer (either food pellets or a sugar solution). Then,
they delivered noncontingent reinforcers of one type. They observed that
only the rate of emission of the operant response associated with the re-
inforcer delivered noncontingently was reduced. This is incompatible with
a response competition account of the contingency effect in operant condi-
tioning since such an hypothesis predicts that the ratio of emission of both
operant responses should decrease.

Moreover, the RW model explains these results by the fact that the con-
text has become a predictor of the reinforcers. So, if we could reduce the
predictive value of the context, the impact of the noncontingent reinforcers
on the operant response should be reduced. This could be done by signal-
ing with a stimulus all the noncontingent reinforcers. This was done by
Hammond and Weinberg (1984) and Dickinson and Charnock (1985). They
observed that the decrease in the rate of emission of the operant response is
less important when the noncontingent reinforcers are signalled by a light.

These experiments are among the few ones which seem to demonstrate
that a predictive learning mechanism is underlying operant conditioning.
Another line of evidences comes from neurophysiological studies which have
been looking for NDP in the brain and which were using operant conditioning
procedures.
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Figure 2.5: Localization of the main dopamine pathways in the brain (from
Donahoe and Palmer, 1994)

2.3 Neurophysiological studies

2.3.1 Neurodynamic programming and the basal gan-
glia

The activity of midbrain dopamine neurons during learning in the
monkey

Figure 2.5 shows the localization of the main dopamine pathways in the
human brain. Their sources are the substantia nigra (SN) and the ventro-
tegmental area (VTA), both located in the midbrain. From there, they widely
project through the brain, especially to the orbito-frontal cortex and the
ventral striatum. Both structures send projections back to the VTA and SN.

These pathways play a critical role in reinforcement (see Robbins &
Everitt, 1996; Wise, 1996 and Wise & Rompre, 1989 for reviews). So, a
rat will quickly learn to press a lever if this causes the electrical stimulation
of brain areas close to dopamine sites, the most effective areas being the
VTA, the SN and the medial forebrain bundle containing the ascending and
descending fibers connecting the cortex to the VTA. These brain stimulations
are actually so reinforcing that rats, and even more sophisticated animals like
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Figure 2.6: Response of monkeys’ dopamine neurons at various stages of
learning (adapted from results reported in Schultz et al, 1998). The line
labeled “dopamine response” shows the changes in the dopamine neuron
impulse frequency.

monkeys, would stop doing anything else (including eating) than pressing the
lever (Robbins & Everitt, 1996). It is also demonstrated that the addictive
effect of drugs like cocaine and amphetamine is mediated through their action
on the metabolism of dopamine, especially at the level of the ventral striatum
(Robbins & Everitt, 1996; Wise, 1996). So, for instance, a rat ceases to press
a lever for cocaine self-injection or food after it had been given a dopamine
antagonist at the level of the ventral striatum.

Another line of evidences comes from the laboratory of Wolfram Schultz
and his colleagues (see Schultz, 1998 and Schultz, Tremblay, & Hollerman,
1998 for reviews) who have recorded the in vivo activity of dopamine neu-
rons in monkeys. We will particularly review the results of two studies. In
the first one (Romo & Schultz, 1990), monkeys reached into a food box in
front of them where they could sometimes find food while, in the second one
(Ljungberg, Apicella, & Schultz, 1992), apple juice, first freely delivered to
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the monkey, was used to reinforce lever pressing in the presence of a stimu-
lus (either a light or a sound). The main results from these two studies are
summarized below and in Figure 2.6:

• The dopamine neurons were displaying a kind of constant background
activity consisting of negative or positive impulses of rather long dura-
tions (1.8 to 5.5 ms) and low frequencies (0.5 to 0.5 imp/s).

• This background activity was increased for about 300 ms by certain
stimuli like the delivery of apple juice into the mouth, the discovery of
food in the food box after self-initiated movements and the onset of a
novel stimulus or of a discriminative stimulus predicting reinforcement.
By contrast, touching nonedible objects in the experimental box, arm
movements or aversive stimuli like an air puff or a stimulus used in an
avoidance task as a warning signal for the upcoming of an aversive event
did not have that effect. The dopamine response was massive, involv-
ing about 80 per cent of the neuron recorded. It did not discriminate
between reinforcers (apple juice versus food, conditioned versus uncon-
ditioned) or sensory modality (light versus sound), the same neurons
responding to any of these reinforcing events.

• A reward failed to elicit a dopamine response if it was preceeded by a
reliable reinforcer. So, in the discrimination task, the dopamine neurons
did not respond any more to the delivery of the reward once the task
was mastered. But, they reacted again if the time of delivery of the
reward was advanced or delayed8. Moreover, in this last case, the
dopamine neuron activity was depressed exactly at the usual time of
delivery of the reward. This property of the dopamine response was
also observed with conditioned reinforcers if their onset was predicted
by another stimulus.

So, dopamine neurons seem to respond to the unpredicted onset of a con-
ditioned or unconditioned reinforcer, no matter its sensory modality, by an
increased activity and to the unpredicted nondelivery of a predicted reinforcer
by a decrease activity.

These first results were confirmed by other studies using more complex
tasks (Hollerman & Schultz, 1998; Schultz, Apicella, & Ljungberg, 1993)
and where Schultz et coll. studied the evolution of the dopamine response
during the course of learning. For instance, in a study by Hollerman and
Schultz (1998), the monkey faced two pictures in front of it with a lever
under each one. Pressing the lever under one picture was reinforced by apple

8The reward was delivered 5 seconds after the response
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juice while pressing the lever under the other one was not. Once this task
was mastered on a stimulus pair, another one was introduced, hence allowing
the comparison between the dopamine neuron activity during learned and
unlearned trials. Hollerman and Schultz (1998) observed that the loss in the
dopamine response to the reward was gradual and correlated to the learning
curve of the animal. Moreover, the dopamine response transferred to the
onset of the pictures and was depressed at the usual time of delivery of the
reinforcer when a monkey made an error on a learned trial. Schultz et al.
(1993) got the same results with spatial discrimination tasks.

This pattern of activity contrasts with the one recorded by Schultz and
coll in the ventral striatum (Tremblay, Hollerman, & Schultz, 1998) and the
orbito-frontal cortex (Schultz et al., 1998). Tremblay et al. (1998) trained
successive discriminations, each discrimination being composed of three stim-
uli: pressing a lever was reinforced by apple juice with one stimulus, by a
sound with another one while doing nothing with the third one was also re-
inforced by apple juice. Once the task was mastered with a stimulus trial,
another one was introduced and so on until all the scheduled discrimina-
tions were mastered. Tremblay et al. (1998) observed that neuronal firing
in the striatum was related to the components of the task: a neuron fired
either before or after a specific intratrial event (onset of the discriminative
stimulus, onset of the signal for responding, delivery of the reinforcer) in
a trial for a given kind of trial (movement reinforced versus no movement
reinforced, apple juice used as reinforcer versus sound used as reinforcer),
some neurons sometimes responding to two events and/or to the same event
in two kinds of trials. For Tremblay et al. (1998), these neuronal patterns of
activation reflected reaction to (activation after an event) and expectation
of (activation before an event) the various task components. They were not
built-in templates since they displayed modifications during the course of
learning with some neurons sometimes changing their relationship to a given
intratrial event or to a given kind of trial. In the same way, activity in the
orbito-frontal cortex occurs before the delivery of reward and discriminates
the kind of reward upcoming (Schultz et al., 1998).

For Schulz et coll. (Schultz, 1998; Schultz, Dayan, & Montague, 1997),
these results indicate that the activity of dopamine neurons is coding an
error in the prediction of the amount and time of occurrence of reward. More
specifically, they propose that dopamine neurons are implementing the TD
learning signal r(t)+γvπ[s(t+1)]−vπ[s(t)] used in TD(λ)9. This signal could
be broadcast to the ventral striatum and the orbito-frontal cortex to induce

9Note that this implies an assumption incompatible with the TD model of Pavlovian
conditioning. A negative TD learning signal is necessary to account for the fact that
dopamine activity is depressed when a reward is omitted. But, RW-like models of condi-
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Figure 2.7: Basic neuroanatomy of the basal ganglia. SPs=spiny neurons
from the striosomal compartment, SPm=spiny neurons from the matrix com-
partment, ST=subthalamic nuclei, DA=dopamine neurons, PD=pallidum,
T=thalamus, c=cortical columns in the sensory cortex, f=cortical columns
in the frontal cortex.

synaptic changes, hence allowing these structures to learn predictions and
expectations about the tasks performed. This interpretation is particularly
attractive since the neuroanatomy of the basal ganglia is compatible with an
actor/critic architecture (Houk, Adams, & Barto, 1995; Schultz, 1998).

Actor/critic architectures and the neuroanatomy of the basal gan-
glia

Figure 2.7 shows the neuroanatomy of the basal ganglia (from Houk et al.,
1995). As it is shown in this figure, the striatum is composed of two parts
(Houk et al., 1995): circumscribed regions called striosomes surrounded by

tioning such as the TD model have to assume that the learning signal cannot be negative in
order to account for the non-extinction of conditioned inhibitors when they are presented
alone.
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matrix regions. Both contain spiny neurons receiving inputs from the cere-
bral cortex and the thalamus. Spiny neurons from the striosomal regions
(SPs) and from the matrix regions (SPm) differ, among other things, by the
area to which they project: SPs send direct inhibitory connections to the
dopamine centers from the VTA and SN and indirect excitatory connections
to these same areas through the subthalamic nuclei while SPm project, with
the same direct inhibitory/indirect excitatory pattern, to the pallidum which
is the output of the basal ganglia (Houk et al., 1995). The pallidum could
influence behavior through its projections unto the frontal cortex. Finally,
dopamine neurons from the VTA and SN send projections back to the SPs
and SPm.

Houk et al. (1995) argued that this anatomy is compatible with an ac-
tor/critic architecture: the striosomal module (cortico-striatal pathways which
project unto the VTA and SN) would be the critic while the matrix mod-
ule (cortico-striato-pallido-cortical pathways) would be the actor (see Figure
2.7). The striosomal module would use its cortical inputs to compute a pre-
diction of reward that would be sent to the midbrain dopamine neurons. The
dopamine neurons would combine them with information about the amount
of primary reward collected (through yet unkown pathways probably coming
from the lateral hypothalamus, see Houk et al., 1995) to generate the TD
learning signal10. This signal would be broadcast back to the striosomal mod-
ule (hence allowing it to improve its reward predictions) and to the matrix
module (so its output could be adaptively driven by its cortical input). See
also Houk et al., 1995 for a plausible biochemical model of synaptic plastic-
ity for striatal neurons which would implement eligibility traces. A problem
with this model is that the output of the striosomal module is not a single
striatal neuron projecting unto a single dopamine neuron. Wide populations
of striatal neurons are sending connections to wide populations of dopamine
neurons (Houk et al., 1995). On the other hand, the dopamine responses
recorded by Schultz et coll. were massive and homogenous.

Suri and Schultz (1999) used this model in the design of a real-time neural
network simulating data from Schultz et coll. Its architecture is displayed
in Figure 2.8. It basically combines an actor/critic architecture with some
well-known techniques in neural network modeling: the actor and the critic
are linear perceptrons; the behavior corresponding to the output unit with
the higher activation level is emitted (noise is added to the activation of the
output units so that the agent’s behavior keeps some variability); the TD

10The direct connections would send information about vπ[s(t)] since they are inhibitory
while the indirect connections would send infomation about vπ[s(t + 1)]. Experimental
results show that the information from the excitatory indirect pathways reach the midbrain
dopamine structures before the direct inhibitory ones. See Houk et al. (1995)

42



S1 S2

Reward

Actor

Critic

TD learning signal

Dopamine neurons

R1 R2

Cerebral cortex

STRIOSOMAL MODULE

MATRIX MODULE

-

-

Figure 2.8: Overall organization of Suri and Schultz (1999)’s model.

learning signal computed by the learning system is used by the critic (using
TD(0)) and the actor (using a delta rule) to update their weights.

The same model could actually have been designed without any knowl-
edge about the underlying neurophysiological substrate if not for a few orig-
inal features. So, for instance, only the critic uses tapped delay lines while a
more primitive technique for the representation of temporal events is used in
the actor e.g. replacing eligibility traces (see equation 1.16). This is because
the time of delivery of reward does not seem to be coded at the level of the
ventral striatum: if the time of delivery of an expected reward is delayed, re-
ward expectation activity keeps on until reward delivery11. In the same way,
the initial value of the weight between the first lag unit in a tapped delay
line and the output of the critic is positive and has a lower learning rate in
order to simulate the dopamine response to novel stimuli and its rather slow
extinction 12. Finally, as it can be shown on Figure 2.6, there is no depression

11Both input and output units have eligibility traces which are used in place of their
activation level in the delta rule. Actually, the eligibility trace of an input neuron is its
activation level.

12Because of that lower learning rate, the onset of a conditioned reinforcer in the middle
of an extinction procedure initially produces a positive reward prediction followed by a
negative one. This was also observed in monkeys by Schultz et coll. (see Suri & Schultz,
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in dopamine activity at the usual time of delivery of a reward if this time is
advanced. For Suri and Schultz (1999), this is because reinforcers and stimuli
highly correlated with reinforcers “grasp the attention” of the monkey: in a
sense, this caused it to forget the discriminative stimulus. In the network, if
the contribution of the first lag unit from a delay line to the output of the
critic is higher than that output during the last time step, the activation of
all the other critic’s input neurons is set to 0.

The model masters the simple tasks used by Romo and Schultz (1990) and
Ljungberg et al. (1992) as well as the more complex spatial discrimination
tasks used by Schultz et al. (1993). Not surprisingly, the TD learning signal
mimics the dopamine neuron activity at each stage of learning in all these
tasks. Interestingly, a model using the immediate amount of reward collected
instead of the TD learning signal was unable not only to mimic the dopamine
neuron activity but also to master the various tasks studied by Schultz et al.
(1993).

Related models

Other neural models trying to take account of neurobiological constraints and
using NDP to modelize the learning signal coming out from the dopamine
centers are Donahoe et al. (1993)’s and Friston, Tononi, Reeke, Sporns, and
Edelman (1994)’s ones. These two models actually share a lot in common
like a use of complex activation functions, an emphasis on the connections
between the dopamine centers and the cortex, a selectionist conception of
learning13 and the use of an actor/critic architecture to which an adaptive
preprocessor has been added e.g. raw inputs are preprocessed before reaching
the actor and the critic by a neural network whose weights are set by the TD
learning signal generated by the critic. Another similarity which is worth
mentioning is that both models assume that information about primary val-
ues is carried to the dopamine centers by the emission of the UR and not by
the onset of the US, like in most models using NDP or RW-like models.

Below, we will take a closer look at Donahoe et al. (1993)’s model. Fris-
ton et al. (1994)’s model has only been used to modelize very elementary
phenomena14 while Donahoe et al. (1993)’s model has been used to address

1999).
13This is a view according to which learning is a process roughly analogous to natural

selection: behavioral repertoire and neural populations in an individual are selected by
their consequences on the environment (Donahoe & Palmer, 1994; Edelman, 1987; Skinner,
1981)

14It has learned a foveation reflex e.g. to bring a spotlight on the center of the retina.
This spotlight has then been used as a conditioned reinforcer in a discrimination task
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Figure 2.9: Overall organization of Donahoe et al (1993)’s model. Arrows
are nonmodifiable connections: activation is simply passed from one neuron
to the next one.

data about operant conditioning.
The architecture of Donahoe et al. (1993)’s model is displayed in Figure

2.915 but, before turning to its description, it would be useful to look at the
activation functions and learning equations used by the network which are a
bit more complex than the ones used in most neural network models.

• A neuron can receive signals from excitatory and inhibitory neurons.
If the inhibitory signal is higher than the excitatory one, the neuron
is shut down (its activation level is set to 0). Otherwise, its activation
level slightly increases if the excitatory signal is above a random varying
threshold. If not, it slightly decreases.

15This way to present Donahoe et al. (1993)’s model differs from the one used by Don-
ahoe et al. (1993) themselves but we consider that it makes the overall functioning of
the network more understandable. It is only with this kind of presentation that striking
similarities between Donahoe et al. (1993)’s model and Friston et al. (1994)’s one appear.
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• The learning rule takes inspiration from a neural plasticity phenomenon
observed in many parts of the brain (and especially in the hippocam-
pus) called long term potentiation (see Donahoe et al., 1993 for further
details): the weight between two neurons is enhanced if they are coac-
tive when a learning signal reaches the synaptic connection between
the two neurons and decreases otherwise16.

Now, we can turn to the network’s architecture. It is composed of two
systems, the sensory and the motor subnetworks, each designed according to
an actor/critic architecture augmented by an adaptive preprocessor except
that the actor is missing from the sensory subnetwork.

• The sensory subnetwork (SS) simulates activity in the sensory cortex.
Raw inputs from the environment are processed by a one-layered per-
ceptron whose output is sent to the motor subnetwork (MS) and to the
critic of the SS. The output of the critic is then used to compute the
TD learning signal17 by the hippocampal learning system. It is positive
each time the output is different from one time step to the other e.g.
every time there is an unexpected change in the SS input.18 The hip-
pocampal learning system works even in the absence of reinforcement
but its learning signal is potentiated when the VTA/SN learning system
is active, thanks to connections between the two learning systems.

• The motor subnetwork simulates activity in the frontal (adaptive pre-
processor and critic) and motor (actor) cortex. The output of the one-
layered perceptron used as a preprocessor is sent to the critic which
computes a reward prediction used by the VTA/SN learning system
to compute the TD learning signal. The critic and the actor are also
one-layered perceptrons. Each output unit of the actor stands for a
behavior, its activation level being interpreted as the probability of
emission of the corresponding behavior. A very special output unit is
the one standing for the CR/UR since its activation level is sent back
to the VTA/SN learning system to determine the amount of primary
value collected at a given time step. It can be directly activated by the
input unit of the SS standing for the US.

16The increase is proportional to the amplitude of the learning signal and to the activa-
tion level of the two neurons. The decrease is also proportional to the neurons’ activation
level.

17For the SS, the learning signal is actually the absolute value of the TD learning signal
18The introduction of the SS was motivated by experiments on compound conditioning

in a Pavlovian context: if a compound stimulus AB is followed by the US but this is not
the case for A and B alone, an animal will quickly learn to emit a CR only after AB except
if its hippocampus has been destroyed.
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The model provides a unifying framework for operant and Pavlovian con-
ditioning, accounting for basic operant and Pavlovian phenomena (acqui-
sition, extinction, discrimination, blocking,...) but each time in a purely
qualitative way. It is also able in some way to account for the so-called bio-
logical constraints on learning. For instance, it is almost impossible to make
a pigeon learn to peck a key to avoid an electric shock while it will quickly
learn to press a button with its wings to avoid that shock (Bolles, 1970).
In Donahoe et al. (1993)’s network, a CR also develops during an operant
conditioning procedure and reaches its asymptotic level before the operant
response. So, if both are incompatible, the CR will block the acquisition of
the operant. This is the problem with key pecking to escape shocks in the
pigeon: electric shocks elicit wing flapping movements which compete with
the key pressing response. On the other hand, if the CR and the operant
response are compatible, the early emergence of the CR will facilitate the ac-
quisition of the operant. So, shock elicited wing flapping are compatible with
pressing a button with a wing and this is why a pigeon learns this response
so quickly.

The model is also able to simulate some features of pigeon responding
under FI. The pigeons’ performance in FI is characterized by the so-called
scallop pattern of responding: after a reinforced response, the pigeon waits
before starting to peck at a high rate until the next reinforced response. The
duration of the pause before the pigeon starts pecking again is proportional
to the interval of the schedule (Fester & Skinner, 1957; Williams, 1988; Zeiler,
1977). Submitting their model to a simulated FI 10 seconds, Donahoe and
Burgos (1999) were able to synthesize scallop responding despite the absence
of any explicit timing mechanisms in their system. This can be related to a
study by Burgos (1997) who used a genetic algorithm19 to make the architec-
ture of the basic network depicted in Figure 2.9 evolve. The networks were
submitted to a Pavlovian conditioning procedure with different ISI and their
fitness score was the proportion of emission of the CR on the 25 last test
trials. Among other results (see Burgos, 1997 for further details), Burgos
(1997) discovered that the networks from the last generations were display-
ing the inverted U-shaped ISI function peaking at the ISI which was trained
with their ancestors, despite the existence of an explicit timing mechanism.
But Donahoe and Burgos (1999)’s simulations remain purely qualitative and
no other interval values were explored to see if the model could account for

19A genetic algorithm is a program mimicking evolution through natural selection: so-
lutions for a given problem are generated and their fitness score (how good they are to
solve the problem) evaluated. The solutions with the highest fitness score are selected and
a new generation of solutions is created by mixing their “genotype” (see, Mitchell, 1997
for an introduction).
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more advanced properties of pigeons’ responding under interval schedules.
Recently, Donahoe and Burgos (2000) and Burgos (2000) have started

to modify the basic network architecture depicted in Figure 2.9. They still
use the same activation and learning rules and they stick to the two subnet-
work/two learning system architecture but they have changed the architec-
ture of the subnetworks. These modifications allowed them to account for
reinforcer reevaluation phenomena (Donahoe & Burgos, 2000) and supersti-
tious behaviors (Burgos, 2000).

• Reinforcer reevaluation refers to a modification of the rate of emission
of an operant induced by an independent manipulation of the reinforcer
value (Donahoe & Burgos, 2000). For instance, Colwill and Rescorla
(1985) caused a decrease in the rate of lever pressing of rats by pair-
ing the food used as a reinforcer with poison outside of the operant
conditioning situation. To simulate this, Donahoe et al. (1993) had
to assume recurrent connections between the VTA/SN learning system
and the input units of the motor subnetwork’s actor. These units are
highly activated at the time of reinforcement and, so, gain an exces-
sive control over the operant response. By manipulating the weight
between them and the operant response, it is then possible to modify
the probability of emission of the operant. But Donahoe and Burgos
(2000) do not describe how operations like pairing food with poison
could have this effect on those weights.

• Superstitious behaviors are behaviors not required for reinforcement
but which develop nonetheless when a reinforcer is delivered in cer-
tain conditions (Burgos, 2000; Staddon, 1977). For instance, if food is
delivered to a pigeon every x seconds, the animal will develop species-
specific and stereotyped behaviors during the interreinforcement inter-
val most likely appearing after the delivery of the reward (Skinner,
1948; Staddon & Simmelhag, 1971). A related phenomenon is the non-
programmed emergence of keypecking in the autoshaping procedure.
Burgos (2000) has shown that if the preprocessors and actors of Don-
ahoe et al. (1993)’s model are no more perceptrons (e.g. the connec-
tions between the input and output layers are no more extensive), then
other units than the operant response unit and the CR/UR unit are
activated during an operant conditioning procedure. This is a first step
since other features of superstitious behaviors remain to be simulated
such as their timing properties.
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Figure 2.10: Neuroanatomy of the cerebellar cortex

2.3.2 Neurodynamic programming and the cerebellum

Neuroanatomy of the cerebellum

The dopamine systems are not the only neural structures involved in learn-
ing. Another part of the brain which has attracted a lot of attention is the
cerebellum. Especially, it has been shown that the cerebellum is fundamental
for NMR conditioning in the rabbit (Bartha & Thompson, 1995). Electro-
physiological and lesion studies have identified the precise neural pathways
necessary and sufficient for the acquisition of the CR in that context and
they only imply the brain stem and the cerebellum. Higher structures play
a mediating role but are not necessary, at least in the basic procedure. For
instance, a rabbit without a hippocampus can acquire a CR except in a trace
conditioning procedure where there is a delay between the offset of the CS
and the onset of the US (Bartha & Thompson, 1995). In this part, we will re-
view the main anatomical and neurophysiological features of the cerebellum
before turning to its relations with NDP.

Just like the brain is covered by a layer of grey matter (the cerebral
cortex), the cerebellum is also covered by such a layer: the cerebellar cortex.
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Its structure is highly regular and is displayed in Figure 2.10 (Ghez, 1991).
It is composed of three layers:

• The molecular layer mainly composed of the axons of the granular cells
(GraCs) called the parallel fibers (PFs).

• The Purkinje cell layer contains the huge Purkinje cells (PCs) whose
complex dendrites make contact with the PFs in the upper layer.

• The granular layer is composed of numerous GraCs as well as of bigger
neurons called the Golgi cells (GCs).

Deep under the cerebellar cortex lie the deep nuclei. One of them, the inter-
positus nucleus (IP) will be central in our discussions below.

There are only two inputs to the cerebellum, both coming from various
areas of the brain stem and spinal cord. They end in the cerebellar cortex
but send collaterals to the deep nuclei (Ghez, 1991).

• First, we have the climbing fibers (CFs) which directly make contact
with the PCs. The synaptic contact between the CFs and the PCs is
among the strongest ones that can be found in the nervous system.

• The other input to the cerebellum and cerebellar cortex is the mossy
fibers (MFs) which make contact with the granular cells.

The deep nuclei are the sources of all the output of the cerebellum. They
project to the brain stem and spinal cord. This activity from the deep nuclei
is modulated by the inhibitory influence of the PCs whose axons are the sole
output of the cerebellar cortex.

Note that there are also several interconnections within the cerebellar
cortex. For instance, the GCs send inhibitory projections to the GrCs (see
Figure 2.10 for other examples like the inhibitory connections between the
basket cells and the PCs). Finally, it has been observed that the contiguous
activity of a PF and of the CF acting on a PC reduces the ability of this
PF to trigger activity in the PC. This example of neural plasticity is called
long-term depression (LTD).

Implementation of the TD model in the cerebellum of the rabbit

The neural pathways involved in rabbit NMR conditioning are displayed in
Figure 2.11 (Bartha & Thompson, 1995; Moore & Choi, 1997; Moore et al.,
1998; Rosenfield & Moore, 1995). The specific part of the cerebellar cortex
involved is Larsell’s HVI. Several models (see Bartha & Thompson, 1995)
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Figure 2.11: Neural pathways involved in NMR conditioning in the rab-
bit. (from Moore and Choi, 1997). RN=red nucleus, PN=Pontine
nucleus, MN=motoneuron, SpO=spinal trigeminal nucleus, IO=inferior
olive, IP=interpositus nucleus, PC=Purkinje cells, MF=mossy fibers,
CF=climbing fibers. The dashed line represents the boundary of the cere-
bellar cortex. The empty circle above the dashed line are granular cells

have been proposed to explain the specific function played by each structure
in NMR conditioning. Among these models, Moore et coll.’s one (Moore &
Choi, 1997; Moore et al., 1998; Rosenfield & Moore, 1995) is particularly
appealing since it is simply an implementation scheme for the TD model.

Moore et coll.’s model relies on three principles:

• A CR is triggered when the red nucleus (RN) is activated by the IP.
When a CS is presented, it activates GraCs which activate PCs. This
causes the inhibition of the IP activity. For a CR to be triggered, the
inhibition of the IP by the PCs must be reduced through LTP. The role
of the IP and of the RN in the emission of the CR has been confirmed
by several studies. For instance, Desmond and Moore (1991b) and
Berthier and Moore (1990) have shown that the activity in the IP and
the RN is correlated with the CR although these two nuclei start firing
before the emission of the CR (as it should be expected since they are
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Figure 2.12: Implementation of the TD model in the cerebellum according
to Moore et coll. (adapted from Moore and Choi, 1997). See the preceeding
figure for the meaning of the abbreviations

premotor centers).

• LTP can also be induced by a strong activation of the PFs. This has
been shown experimentally by Hartell (1996). If a NS is presented
alone, it will activate the PFs but this activation is supposed to be too
low to induce a LTD.

• The amplitude of the LTD depends on the amount of activity impinging
on a PC. This sounds like a paradox since the consequence of LTD is to
reduce the efficiency of the synaptic transmission between a PF and the
PC. Like most excitatory pathways in the brain, PFs send glutamate to
the PC when activated and there are actually two kinds of glutamate
receptors on a PC. Experimental evidences indicate that LTP is caused
by a desensitization of the response of one of these two receptors to
glutamate (Crepel, Hemart, Jaillard, & Daniel, 1995). So, the amount
of neurotransmitters sent to a PC when a PF is fired is not changed by
LTD. The amplitude of LTD would be determined by this amount of
neurotransmitter (which could be captured by the glutamate receptors
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not involved in LTD).

So, the amount of activity impinging on a PC is a kind of learning signal.
To show that the cerebellum could implement the TD model, it must be
shown that this activity is equal to the TD learning signal r(t) + γvπ[s(t +
1)] − vπ[s(t)]. Moore et coll. consider that it is composed of two parts: the
primary reinforcement signal r(t) and the secondary reinforcement signal
γvπ[s(t+1)]− vπ[s(t)]. Each signal would be transmitted to the PC through
different pathways (see Figure 2.12).

• The primary reinforcement signal r(t) would be transmitted by the CFs
activated by the inferior olive (IO). Note that the IO, which is activated
by the US, is supposed to trigger the UR through different pathways
from the CS. This is coherent with known neuroanatomical data.

• The real original point in Moore et coll.’s model concerns the secondary
reinforcement signal. It would be implemented by a modulation by the
GCs of the activity of the GraCs activated by the CS. More precisely :

1. Since the RN controls the emission of the CR, it is plausible that
its activity is equal to vπ(t). This information about the actual
situation value would be sent to some PCs (through the GraCs) as
efferent copies. Hence, Berthier and Moore (1986) have observed
that the activity of some PCs was positively correlated with the
CR. Among these PCs, some of them started to fire before the
beginning of the CR. Since an increase in the activity of a PC is
incompatible with the emission of the CR, Moore et coll. assume
that these PCs were actually receiving efferent copies of the CR
sent by the RN. Through collaterals, these PCs would then inhibit
the activity of the GCs connected to the GraCs activated by the
CS. The amplitude of this inhibitory signal should be vπ(t) but,
because of all the neuronal waystations between the RN and the
GCs, it would be γvπ(t).

2. Efferent copies of the CR would also be sent by the RN to the SpO.
Desmond and Moore (1991b) have observed that the SpO activity
was correlated with the RN activity but with a delay of about
15 to 20 ms. So, the SpO activity would be equal to vπ(t − 1).
This information would be sent (through the GraCs) to the GCs
connected to the GraCs activated by the CS. Hence, Berthier and
Moore (1986) observed that some of the PCs whose activity was
correlated to the CR started to fire after the beginning of the CR.
For Moore et coll., these PCs were activated by GraCs receiving
information about vπ(t− 1) from the SpO.
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3. If both the inhibitory signal coming from the RN and the exci-
tatory signal coming from the SpO are taken into account, the
activity of the GCs is modulated by a factor equal to vπ[s(t −
1)] − γvπ[s(t)]. So, the activity of the GCs is supposed to be
determined by the change in the situation values. Since the TD
model assumes that the situation value at time t is proportional
to the amplitude of the CR at time t, a prediction that can be
drawn from Moore et coll.’s model is that the activity of the GCs
should be related to the change in the position of the eyelid or of
the nictating membrane. This has been shown experimentally in
monkeys by Van Kan, Gibson, and Houk (1993) (see also Edgley
& Lidierth, 1987 with cats) but not yet in rabbits.

4. Since the connections between the GCs and the GraCs are in-
hibitory, the activity of the GraCs activated by the CS is modu-
lated by a factor equal to γvπ[s(t)]− vπ[s(t− 1)]. This completes
the implementation of the secondary reinforcement signal.

It is certainly possible to map any algorithm on any part of the brain and
the value of an implementation scheme relies on its ability to account for data
and on its heuristic value. We have already pointed to some data compatible
with Moore et coll.’s model and the hypotheses sustaining the model are
sufficiently precise to insure its heuristic value. Among these hypotheses, one
assumes that the secondary reinforcement signal is implemented by efferent
copies of the CR sent by the RN. A study by Ramnani, Hardiman, and
Yeo (1995) seems to support this particular point. In this study, once the
activity of the IP had been blocked by drugs, the CS was presented alone.
This procedure normally causes the disappearance of the CR but, once the
pharmacological blocking of the IP activity was released, the CR was still
observed. According to Moore et coll.’s model, this is because the secondary
reinforcement signal was not working since no information about the CR
coming from the IP reached the RN. But, the model remains silent about
eligibility traces.

2.4 Synthesizing complex behaviors

Skinner (see, for instance, Skinner, 1957, 1981) has argued that complex
human behaviors are the emergent products of the interaction between the
subject and his environment and that, if enough attention is payed to that
interaction, basic learning processes such as the ones studied in conditioning
experiments will prove to be sufficient to understand complex human activity
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(see footnote 13 on selectionism). To conclude this review, we will look at
two studies which had used artificial agents using reinforcement learning to
see if, indeed, complex behaviors could emerge through the interaction of the
agent with its environment.

2.4.1 Verbal learning

An enduring controversy in psychology and cognitive science is about the con-
tribution of innate versus acquired factors in language acquisition (Pinker,
1994). Considering language as just another instance of adaptive behavior,
Skinner (1957) tried to apply principles borrowed from the study of oper-
ant conditioning in animals to verbal behavior. In a violent and sometimes
unfair (McCorquodale, 1970) criticism, Chomsky (1959) argued that rein-
forcement principles could never account for language acquisition and that
it was necessary to postulate an innate species-specific device for that. This
remains the dominant position in psycholinguistics (Pinker, 1994). Syntax is
at the center of the arguments against a reinforcement learning approach to
language acquisition. First, it seems that parental feedback (“good”, “that’s
right”,...) that could be used as reinforcers are contingent upon the truth
value of the child’s utterance and not upon its grammaticality (Brown &
Hanlon, 1970): true but grammatically false utterances are reinforced while
wrong but grammatically true utterances are not reinforced and are even
sometimes punished20 (but see Moerk, 1990 on a possible parental feedback
concerning the grammaticality of the child’s utterances in Brown and Han-
lon’s data as well as Saxton, Kulcsar, Greer, & Mandeep, 1998 for an exper-
imental demonstration of its efficiency and Palmer, 1996 for possible subtle
sources of reinforcement). Second, it is considered that the kind of rule-
following behavior observed in grammar is, in principle, out of reach of a
system using only reinforcement learning. A core assumption there is about
the so-called “creativity” of language (Chomsky, 1959) e.g. the fact that
anyone can utter or create grammatically correct sentences that have never
been heard or spoken previously and so that could never have been reinforced
before.

William Hutchison (see Hutchison, 1998b) has tried to simulate several
verbal phenomena in an artificial neural network using RL to see if they
were really out of reach of a RL system. His goal is not to modelize human
data but to see if RL is sufficient to produce some basic verbal phenomena
(Hutchison, 1998b).

20Another problem that arises is that, normally, reinforcers and punishers are identified
a posteriori, based on their effect on behavior (Skinner, 1938).
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Hutchison’s network, called 7g, is a linear perceptron using a Q-learning-
like learning algorithm (see Hutchison, 1998a for further details).

• The network can receive input from external (light, sound,...) or in-
ternal (actual level of calories, last behavior emitted,...) sources of
stimulation. Each input neuron is tied to a sensory modality and to a
target stimulus value and it is maximally activated if its target stimulus
is presented. A tapped delay line is associated to each input neuron.

• Each output units is associated to a behavior. The behavior corre-
sponding to the output neuron with the highest activation level is emit-
ted.

• The immediate amount of primary value collected is the logarithm of
the actual amount of calories of the agent minus the amount of calories
used to emit the behavior plus the amount of calories delivered to the
agent as a reward. The logarithm function allows the simulation of
deprivation and satiation: a given amount of calories is more valuable
for an agent with a low level of calories than for an agent with a high
level.

So, the architecture of 7g is very simple and, actually, as we have al-
ready mentioned above, there are serious limitations to what this kind of
system can learn (Minsky & Papert, 1969) but Hutchison argues that these
limitations can be overcome if enough attention is paid to the training pro-
cedures and their sequencing (Hutchison, 1998d). Taking inspiration from
Skinner (1957), the two main algorithms he has developed and automatized
(Hutchison, 1998a, 1998c) allow the training of a basic verbal repertoire:

• A fundamental notion in Skinner (1957)’s analysis is the one of a min-
imal repertoire which is a mapping between stimuli and responses. For
instance, an echoic minimal repertoire allows the organism to repeat
what he has heard by mapping auditive stimulations unto vocal re-
sponses. Other minimal repertoires allow the imitation of a visual
model (by mapping visual stimulations unto motor responses) or the
execution of instructions (by mapping auditive stimulations unto motor
responses). Hutchison has developed an algorithm allowing the autom-
atized training of minimal repertoires. The algorithm introduces the
various stimuli of the minimal repertoire one by one, reinforcing good
responses and randomizing the presentations of the stimuli in order to
enhance their control over the responses (Hutchison, 1998a). The al-
gorithm takes into account the spontaneous behavior of the agent in
order to decide which stimuli to present, as it seems to be the case in
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parent/child interactions (Hutchison, 1998b). This produces a faster
learning than when the order of presentation of the stimuli was deter-
mined by the algorithm alone.

• According to Skinner (1957), the training of a minimal repertoire is im-
portant especially because it then allows the use of much more powerful
teaching methods like the prompt and fade technique which is used very
efficiently in applied setting by psychologists (Hutchison, 1998b) and,
certainly, by all the parents. Suppose, for instance, you want to teach
a child that the word for a dog is “dog”21 . You could show him the
picture of a dog, wait for the child to say “dog” spontaneously and then
reinforce him. You could wait for a long time since the spontaneous
occurrence of “dog” in a child’s behavior is probably low. You could
proceed in a much more efficient way if the child had an echoic minimal
repertoire allowing him to repeat what he hears. This time, when you
would present the picture of the dog, you could say “dog”. Because
of his minimal repertoire, the child would repeat “dog” and would be
reinforced. The child would then learn to say “dog” in presence of
the picture of the dog if this procedure were repeated, the intensity
of the auditive prompt “dog” being reduced each time until it would
be presented no more. Hutchison has been able to mimic the prompt
and fade procedure in his network. His algorithm produces very fast
learning without error.

Using these two algorithms, Hutchison (1996) has trained an echoic reper-
toire and a tact repertoire allowing the network to name 3 shapes and 3 col-
ors. The tacts for the colors and the shapes were trained separately. Then,
colored shapes were presented to the network and it was only reinforced
if it named the color before the shape. This simple grammatical rule was
trained with 8 colored shapes. Once this was acquired, the ninth colored
shape was presented to see if the network generalized the grammatical rule.
It did and named the color before the shape (see Hutchison, 1996 for further
details about the learning procedure). Using Hutchison’s network and his
algorithms, we have reproduced this simulation with a greater number of
shapes and colors. After having learnt to name 6 shapes and 6 colors, the
network was explicitly taught the grammatical rule with 24 of the colored
shapes. It then correctly generalized this rule when tested with the 12 re-
maining colored shapes. But, the conditions under which this grammatical
generalization occurs are not clear yet.

21In Skinner (1957)’s terminology, this is called a tact. A tact is a verbal response under
the control of a nonverbal stimulus. To emit a tact is said to tact the controlling stimulus.
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Using the same network as the one used in the syntax learning simulation,
Hutchison (1996) tried to teach it a verbal instruction of the “if condition
x then action x” kind. Using the prompt and fade algorithm, he taught it
to say “action 1” when hearing the word “stimulus 1” and “action 2” when
hearing the word “stimulus 2”. “stimulus 1” and “stimulus 2” were tacts
controlled by colored shapes while “action 1” and “action 2” controlled the
emission of two different behaviors. Once this was done, the network emitted
the correct action in presence of both stimuli, even if these actions have never
been previously reinforced in presence of these stimuli (see Hutchison, 1998b,
1998d for other simulations with 7g).

This does not demonstrate the validity of a RL approach to language nor
does it show that language acquisition in humans is caused by reinforcement
processes. But these simulations clearly show that one should be very careful
before saying that a RL system is unable to learn this or that kind of behav-
ior. Recent works with 7g have taken a more applied direction (Hutchison,
personal communication). The output system of the network is now a re-
alistic artificial jaw and the network is now able to receive real speech as
input and Hutchison is currently trying to make it recognize words spoken
by children so that it could supervise word learning with language-impaired
children.

2.4.2 Reaching development

Berthier (1996) has used Q-learning to simulate the development of infant
reaching. The set of states S of his model is composed of coordinates (x, y) on
a plane and the agent interacts with its environment until it reaches a set of
target states corresponding, for instance, to an object that must be grasped.
Each time step, the agent emits a control ui(t) = {dxi, dyi, vi} where dxi and
dvi are the distances in the x and y directions and vi is the movement speed.
The state of the environment is then updated using the following equation

x(t+ 1) = x(t) + dxi + ε

y(t+ 1) = y(t) + dyi + ε (2.5)

where ε is a random variable following a gaussian distribution with mean

0 and standard deviation
√
kv2

i + 0.2. k is a free parameter controlling the
stochasticity of the state transition. By decreasing it, Berthier (1996) is able
to simulate the increased control an infant has over his arms as his motor
system develops.

So, at time t, the environment is in state s(t) = [x(t), y(t)] and the agent
emits control ui = {dxi, dyi, vi}. The environment then goes into state s(t+1)
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and q∗[s(t), ui], the estimation of Q∗[s(t), ui] stored by the agent is updated
according to

q∗[s(t), ui] := q∗[s(t), ui]+α{c[s(t), ui, s(t+1)]+γmin
u
q∗[s(t+1), u]−q∗[s(t), ui]}

(2.6)
which is just the standard Q-learning equation. c(s, u, s′) is simply the time
required to move the arm from state s to state s′.

Berthier (1996) studied the evolution of the policy computed by equation
(2.6) while k was progressively decreased. He found that, for a high value
of k, the agent reached the target using a sequence of submovements with a
high speed, while, when k was low, the agent reached the target with a single
quick submovement. This corresponds to the evolution of reaching observed
in infants (Berthier, 1996).

2.5 General conclusions

MDP and RL algorithms are extremely popular in artificial intelligence and
we think that we have showed in this review that they have an enormous
potential for understanding animal learning. But, it seems to us that this
potential is underpexploited especially in the field of operant conditioning
where the few proposed models have failed to address central issues of operant
researches such as schedule performance. For us, it comes from the fact
that the MDP framework has been totally neglected by these applications of
reinforcement learning to conditioning.

The MDP framework is a kind of recipe to build a RL model. It makes
explicit the decisions a modeler makes in building a model: (a) What is S?
(b) What is U? (c) What is f(s, s′, u)? (d) What kind of NDP algorithm the
agent is using? (e) How does the agent solve the exploration/exploitation
dilemma? (f) What kind of function approximation architecture is used by
the agent? If it is a neural network, then several other questions need to be
solved (g) What is the network’s architecture? (h) What are the rules gov-
erning the activations of the neurons? (i) What kind of preprocessing should
be used in the model? Each of these decisions will influence the model’s
performance in a dramatic way and it could be very hard to know exactly
which of them are responsible for a given feature of the model’s behavior.
Moreover, it would be idealistic to think that making these decisions at ran-
dom would lead to interesting models: the state space of the models is simply
too large. Maybe a model built that way would be able to account for very
basic phenomena but not for more sophisticated features of behavior. So,
each decision must be constrained.
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A solution used, for instance, by Donahoe et al. (1993) is to constrain
the model’s architecture with neurophysiological data but this raises several
problems. First, neurally inspired models are always extremely simplified
when compared to real brains (Marr, 2000) and some features of the nervous
system are always left behind. Maybe some of these features are fundamen-
tal for the understanding of behavior (Hutchison, 1998d)22. Second, it is not
clear if neurophysiological data provide enough constraints for a model. Bas-
ing their work on the same knowledge about the neural pathways underlying
reinforcement, Donahoe et al. (1993) and Suri and Schultz (1999) come with
a very different model’s architecture. Third, neural data are not sufficient to
constrain all the features of a model and some decisions still need to be made
without their help. This is, for instance, the case of Donahoe et al. (1993)’s
rules for the activation of neurons. Claiming the same neural plausibility for
their model, Friston et al. (1994) come with very different equations.

Moreover, the emphasis on neural data has led this authors to focus on the
architecture of their model and to neglect the first three questions about the
nature of S, U and the return function. These questions are more important
than the one concerning the architecture because they are more basic: they
must be answered first. Actually, if S and U are small enough so that the
curse of dimensionality can be avoided, a DP model, where only these three
fundamental decisions are to be made, could be explored. This kind of model
would focus the modeler’s attention on questions relating the nature of the
state space, action space and return function while postponing the more
complex problems related the model’s architecture. Actually, it could be
argued that it will be easier to solve this problem once the nature of S, U
and f(s′, s, u has been better understood. The drawback is that it leds to
models of asymptotic performance but we see them as a necessary first step
toward complete models which would also account for the learning of the final
stable performance. At least, these models are in principle able to account
for dynamic properties of asymtotic behavior such as FI scallop.

An example of the approach we propose here can actually be found in
behavioral ecology where this kind of MDP modeling is used in so-called
dynamic state variable model (Clark & Mangel, 2000; Mangel & Clark, 1988).
As an illustration, let’s take example of an animal whose internal state can
be described by its level of energetic reserve x ∈ X where X = [xmin,xmax].
X is the set of states of the environment for the MDP faced by the animal23.

22Some have even argued that the features of the nervous system which are really im-
portant for an understanding of behavior are still unknown (see, for instance, Penrose,
1994).

23Note that X is continuous while the set of states of the environment in a MDP is
discrete. But, X can be discretized. If it contains enough elements, then the optimal

60



Let x(t) be the level of energetic reserve at decision stage t. At each decision
stage t, the animal must choose to forage in patch 1 or in patch 2. Let control
a be the decision to forage in patch 1 and control b the decision to forage in
patch 2. So, the set of controls is U = {a, b}. Foraging in patch 1 costs y1

amount of energy and returns y2 amount of energy with a probability of p1

while foraging in patch 2 costs y4 amount of energy while allowing the collect
of y5 amount of energy with a probability of p2. Finally, let’s assume that
the horizon of the MDP is finished so that the animal has only to choose
in which patch to forage during T decision stages. So, Bellman’s optimality
equation for each control is

Q∗t (x, a) = (1− p1)V
∗
t+1(x− y1) + p1V

∗
t+1(x− y1 + y2)

Q∗t (x, b) = (1− p2)V
∗
t+1(x− y3) + p2V

∗
t+1(x− y3 + y4)

V ∗
t (x) = max [Q∗t (x, a), Q

∗
t (x, b)]

V ∗
T (x) = φ(x) (2.7)

where φ is a given function determining the fitness of the organism (it is called
the fitness function). Using DP to solve the above system of equations, it is
possible to know the optimal foraging strategy for a given amount of energetic
reserve and at a given decision stage (see Jozefowiez, Darcheville, & Preux,
2002 for a first attempt to apply this approach to schedule performance).

strategy derived from this discretized set would be similar to the one derived from the
continuous set.
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